Nuprl Lemma : rv-between-vec-mul

n:ℕ. ∀a,b,c:ℝ. ∀z:ℝ^n.  ((r0 < ||z||)  (a*z-b*z-c*z ⇐⇒ ((a < b) ∧ (b < c)) ∨ ((c < b) ∧ (b < a))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-norm: ||x|| real-vec-mul: a*X real-vec: ^n rless: x < y int-to-real: r(n) real: nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q or: P ∨ Q rv-between: a-b-c real-vec-between: a-b-c exists: x:A. B[x] real-vec-sep: a ≠ b real-vec-dist: d(x;y) real-vec-mul: a*X real-vec-sub: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B uiff: uiff(P;Q) uimplies: supposing a req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top real-vec-add: Y rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y cand: c∧ B guard: {T} i-member: r ∈ I rooint: (l, u) rdiv: (x/y) rat_term_to_real: rat_term_to_real(f;t) rtermAdd: left "+" right rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermDivide: num "/" denom rtermVar: rtermVar(var) rtermSubtract: left "-" right rtermConstant: "const" pi1: fst(t) true: True pi2: snd(t)
Lemmas referenced :  rv-between_wf real-vec-mul_wf rless_wf int-to-real_wf real-vec-norm_wf real-vec_wf real_wf istype-nat int_seg_wf rsub_wf rmul_wf itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 real-vec-sub_wf rabs_wf real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rless_functionality req_weakening real-vec-norm_functionality real-vec-norm-mul real-vec-norm-positive-iff rmul_preserves_req radd_wf itermAdd_wf itermConstant_wf itermMinus_wf rminus_wf req-implies-req req_functionality real_term_value_add_lemma real_term_value_minus_lemma rmul-is-positive rabs-positive-iff radd-preserves-rless rless_transitivity2 rleq_weakening_rless rless_irreflexivity rmul_preserves_rless rdiv_wf i-member_wf rooint_wf req-vec_wf real-vec-add_wf member_rooint_lemma rinv_wf2 rless-implies-rless req_transitivity radd_functionality rmul-rinv3 rminus_functionality assert-rat-term-eq2 rtermMultiply_wf rtermVar_wf rtermAdd_wf rtermDivide_wf rtermSubtract_wf rtermConstant_wf real-vec-between-symmetry radd-preserves-rleq rabs-difference-symmetry rabs-of-nonneg rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule unionIsType productIsType natural_numberEquality inhabitedIsType productElimination setElimination rename applyEquality because_Cache independent_isectElimination dependent_functionElimination approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_functionElimination unionElimination inrFormation_alt inlFormation_alt promote_hyp dependent_pairFormation_alt

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}.  \mforall{}z:\mBbbR{}\^{}n.
    ((r0  <  ||z||)  {}\mRightarrow{}  (a*z-b*z-c*z  \mLeftarrow{}{}\mRightarrow{}  ((a  <  b)  \mwedge{}  (b  <  c))  \mvee{}  ((c  <  b)  \mwedge{}  (b  <  a))))



Date html generated: 2019_10_30-AM-08_49_02
Last ObjectModification: 2019_04_02-PM-04_35_54

Theory : reals


Home Index