Nuprl Lemma : sup-unique

[A:Set(ℝ)]. ∀[b,c:ℝ].  (b c) supposing (sup(A) and sup(A) b)


Proof




Definitions occuring in Statement :  sup: sup(A) b rset: Set(ℝ) req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  sup: sup(A) b uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) top: Top nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: cand: c∧ B rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] upper-bound: A ≤ b rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) rgt: x > y rsub: y
Lemmas referenced :  rless_functionality radd-rminus-assoc radd-assoc rless_transitivity1 radd-preserves-rleq radd-zero-both radd_comm rminus-rminus rmul-zero-both radd-int rminus-as-rmul rmul_functionality rmul-distrib2 rmul-identity1 req_inversion req_transitivity radd-ac req_weakening rminus-radd radd_functionality rleq_functionality uiff_transitivity rleq_weakening_rless rsub_functionality_wrt_rleq rleq_functionality_wrt_implies rless_functionality_wrt_implies rleq_weakening_equal rmul_wf radd_wf rleq_wf int_term_value_mul_lemma itermMultiply_wf rless-int-fractions2 rset_wf rset-member_wf exists_wf real_wf all_wf upper-bound_wf and_wf req_witness nat_plus_wf rabs_wf less_than'_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf rminus_wf rsub_wf rmax_lb rabs-as-rmax infinitesmal-difference
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality independent_isectElimination isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality setElimination rename inrFormation dependent_functionElimination because_Cache independent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll independent_pairEquality applyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality multiplyEquality addEquality promote_hyp

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    (b  =  c)  supposing  (sup(A)  =  c  and  sup(A)  =  b)



Date html generated: 2016_05_18-AM-08_10_20
Last ObjectModification: 2016_01_17-AM-02_28_15

Theory : reals


Home Index