Nuprl Lemma : sup-unique
∀[A:Set(ℝ)]. ∀[b,c:ℝ].  (b = c) supposing (sup(A) = c and sup(A) = b)
Proof
Definitions occuring in Statement : 
sup: sup(A) = b
, 
rset: Set(ℝ)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
sup: sup(A) = b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
cand: A c∧ B
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
upper-bound: A ≤ b
, 
rge: x ≥ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rgt: x > y
, 
rsub: x - y
Lemmas referenced : 
rless_functionality, 
radd-rminus-assoc, 
radd-assoc, 
rless_transitivity1, 
radd-preserves-rleq, 
radd-zero-both, 
radd_comm, 
rminus-rminus, 
rmul-zero-both, 
radd-int, 
rminus-as-rmul, 
rmul_functionality, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
req_transitivity, 
radd-ac, 
req_weakening, 
rminus-radd, 
radd_functionality, 
rleq_functionality, 
uiff_transitivity, 
rleq_weakening_rless, 
rsub_functionality_wrt_rleq, 
rleq_functionality_wrt_implies, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rmul_wf, 
radd_wf, 
rleq_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
rless-int-fractions2, 
rset_wf, 
rset-member_wf, 
exists_wf, 
real_wf, 
all_wf, 
upper-bound_wf, 
and_wf, 
req_witness, 
nat_plus_wf, 
rabs_wf, 
less_than'_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rminus_wf, 
rsub_wf, 
rmax_lb, 
rabs-as-rmax, 
infinitesmal-difference
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
applyEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
multiplyEquality, 
addEquality, 
promote_hyp
Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    (b  =  c)  supposing  (sup(A)  =  c  and  sup(A)  =  b)
Date html generated:
2016_05_18-AM-08_10_20
Last ObjectModification:
2016_01_17-AM-02_28_15
Theory : reals
Home
Index