Nuprl Lemma : integral-int-rdiv
∀[a,b:ℝ]. ∀[f:{f:[rmin(a;b), rmax(a;b)] ⟶ℝ| ifun(f;[rmin(a;b), rmax(a;b)])} ]. ∀[c:ℤ-o].
  (a_∫-b (f[x])/c dx = (a_∫-b f[x] dx)/c)
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
rmin: rmin(x;y), 
rmax: rmax(x;y), 
int-rdiv: (a)/k1, 
req: x = y, 
real: ℝ, 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_nzero: ℤ-o, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
label: ...$L... t, 
true: True, 
guard: {T}, 
rdiv: (x/y)
Lemmas referenced : 
integral-rmul-const, 
rinv_wf2, 
int-to-real_wf, 
rneq-int, 
int_nzero_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
nequal_wf, 
int_subtype_base, 
req_witness, 
int-rdiv_wf, 
i-member_wf, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
int-rdiv_functionality, 
req_weakening, 
req_wf, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_wf, 
squash_wf, 
icompact_wf, 
rfun_wf, 
interval_wf, 
eta_conv, 
real_wf, 
equal_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
subtype_rel_self, 
int_nzero_wf, 
rdiv_wf, 
rdiv_functionality, 
integral_functionality, 
int-rdiv-req, 
member_rccint_lemma, 
rleq_wf, 
rmul_wf, 
rmul_functionality, 
rmul_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
lambdaFormation_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
equalityIstype, 
applyEquality, 
intEquality, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
setIsType, 
inhabitedIsType, 
equalityTransitivity, 
imageElimination, 
setEquality, 
instantiate, 
imageMemberEquality, 
universeEquality, 
isectIsTypeImplies, 
productIsType
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\{f:[rmin(a;b),  rmax(a;b)]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[rmin(a;b),  rmax(a;b)])\}  ].  \mforall{}[c:\mBbbZ{}\msupminus{}\msupzero{}].
    (a\_\mint{}\msupminus{}b  (f[x])/c  dx  =  (a\_\mint{}\msupminus{}b  f[x]  dx)/c)
Date html generated:
2019_10_30-AM-11_38_52
Last ObjectModification:
2019_01_01-PM-04_14_02
Theory : reals_2
Home
Index