Nuprl Lemma : integral-rsum
∀[n,m:ℤ]. ∀[a,b:ℝ]. ∀[f:{f:{n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ| 
                         ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ].
  (a_∫-b Σ{f[i;x] | n≤i≤m} dx = Σ{a_∫-b f[i;x] dx | n≤i≤m})
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx
, 
ifun: ifun(f;I)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
uimplies: b supposing a
, 
real-fun: real-fun(f;a;b)
, 
top: Top
, 
ifun: ifun(f;I)
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
integral-zero, 
rsum-empty, 
trivial-int-eq1, 
sq_stable__req, 
integral-radd, 
decidable__equal_int, 
subtype_base_sq, 
rsum-split-last, 
radd_functionality, 
radd_wf, 
rsum-single, 
integral_functionality, 
req_functionality, 
req_weakening, 
rleq_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_subtype_base, 
equal-wf-base, 
decidable__le, 
add-zero, 
nat_wf, 
nat_properties, 
primrec-wf2, 
less_than_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
uall_wf, 
all_wf, 
rfun_wf, 
integral_wf, 
rmin-rleq-rmax, 
rccint-icompact, 
ifun_wf, 
set_wf, 
req_wf, 
le_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
member_rccint_lemma, 
subtype_rel_self, 
rsum_functionality, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
rmax_wf, 
rmin_wf, 
rccint_wf, 
i-member_wf, 
real_wf, 
int_seg_wf, 
rsum_wf, 
req_witness
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
cumulativity, 
instantiate, 
productEquality, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
independent_pairFormation, 
independent_isectElimination, 
functionEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
setEquality, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
addEquality, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
dependent_set_memberEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
isect_memberFormation, 
setElimination, 
rename, 
thin, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\{f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  [rmin(a;b),  rmax(a;b)]  {}\mrightarrow{}\mBbbR{}| 
                                                  \mforall{}i:\{n..m  +  1\msupminus{}\}.  ifun(\mlambda{}x.f[i;x];[rmin(a;b),  rmax(a;b)])\}  ].
    (a\_\mint{}\msupminus{}b  \mSigma{}\{f[i;x]  |  n\mleq{}i\mleq{}m\}  dx  =  \mSigma{}\{a\_\mint{}\msupminus{}b  f[i;x]  dx  |  n\mleq{}i\mleq{}m\})
Date html generated:
2018_05_22-PM-02_58_04
Last ObjectModification:
2018_05_20-PM-11_02_06
Theory : reals_2
Home
Index