Nuprl Lemma : DVp_Array_wf
∀[lower,upper:ℤ]. ∀[arr:{lower..upper-} ⟶ C_DVALUEp()].  (DVp_Array(lower;upper;arr) ∈ C_DVALUEp())
Proof
Definitions occuring in Statement : 
DVp_Array: DVp_Array(lower;upper;arr), 
C_DVALUEp: C_DVALUEp(), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
C_DVALUEp: C_DVALUEp(), 
DVp_Array: DVp_Array(lower;upper;arr), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
ext-eq: A ≡ B, 
C_DVALUEpco_size: C_DVALUEpco_size(p), 
pi1: fst(t), 
pi2: snd(t), 
C_DVALUEp_size: C_DVALUEp_size(p), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
C_DVALUEpco_size_wf, 
has-value_wf-partial, 
int-value-type, 
set-value-type, 
value-type-has-value, 
nat_wf, 
ifthenelse_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
assert_wf, 
iff_transitivity, 
lelt_wf, 
add-member-int_seg1, 
C_DVALUEp_size_wf, 
bool_cases, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
decidable__le, 
assert_of_le_int, 
le_int_wf, 
sum-nat, 
le_wf, 
false_wf, 
add_nat_wf, 
l_member_wf, 
list_wf, 
C_LVALUE_wf, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
unit_wf2, 
assert_of_eq_atom, 
eqtt_to_assert, 
bool_wf, 
eq_atom_wf, 
C_DVALUEpco_wf, 
C_DVALUEp_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
C_DVALUEpco-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
dependent_pairEquality, 
tokenEquality, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
functionEquality, 
productEquality, 
intEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
unionEquality, 
atomEquality, 
setEquality, 
voidEquality, 
equalityEquality, 
natural_numberEquality, 
independent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
computeAll, 
impliesFunctionality
Latex:
\mforall{}[lower,upper:\mBbbZ{}].  \mforall{}[arr:\{lower..upper\msupminus{}\}  {}\mrightarrow{}  C\_DVALUEp()].    (DVp\_Array(lower;upper;arr)  \mmember{}  C\_DVALUEp())
 Date html generated: 
2016_05_16-AM-08_49_27
 Last ObjectModification: 
2016_01_17-AM-09_42_55
Theory : C-semantics
Home
Index