Nuprl Lemma : homogeneous-extension-implies

R:ℕ ⟶ ℕ ⟶ ℙ. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ.  (homogeneous(R;n 1;s.m@n)  homogeneous(R;n;s))


Proof




Definitions occuring in Statement :  homogeneous: homogeneous(R;n;s) seq-add: s.x@n int_seg: {i..j-} nat: prop: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q homogeneous: homogeneous(R;n;s) and: P ∧ Q strictly-increasing-seq: strictly-increasing-seq(n;s) member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True squash: T seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt guard: {T} bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b sq_stable: SqStable(P) less_than: a < b
Lemmas referenced :  decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add nat_wf minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel and_wf le_wf less_than_wf squash_wf true_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_transitivity2 le_weakening2 less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot int_seg_wf homogeneous_wf decidable__le not-le-2 sq_stable__le zero-add add-zero seq-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis dependent_functionElimination setElimination rename dependent_set_memberEquality hypothesisEquality independent_pairFormation introduction extract_by_obid addEquality natural_numberEquality unionElimination voidElimination independent_functionElimination independent_isectElimination isectElimination sqequalRule applyEquality because_Cache lambdaEquality isect_memberEquality voidEquality minusEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity intEquality equalityElimination int_eqReduceTrueSq dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality int_eqReduceFalseSq imageMemberEquality baseClosed functionExtensionality functionEquality universeEquality

Latex:
\mforall{}R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (homogeneous(R;n  +  1;s.m@n)  {}\mRightarrow{}  homogeneous(R;n;s))



Date html generated: 2017_04_14-AM-07_27_24
Last ObjectModification: 2017_02_27-PM-02_56_40

Theory : bar-induction


Home Index