Nuprl Lemma : s-sub_transitivity

[T:Type]. ∀[s,t,r:stream(T)].  (s-sub(T;s;t)  s-sub(T;t;r)  s-sub(T;s;r))


Proof




Definitions occuring in Statement :  s-sub: s-sub(T;s;t) stream: stream(A) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q s-sub: s-sub(T;s;t) exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] compose: g subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True prop: nat_plus: + less_than: a < b guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  sq_type: SQType(T)
Lemmas referenced :  compose_wf nat_wf istype-nat istype-less_than decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add istype-void minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le s-nth_wf s-sub_wf stream_wf istype-universe nat_plus_properties general_add_assoc less_than_transitivity2 le_weakening2 add_nat_wf primrec-wf-nat-plus less_than_wf nat_plus_subtype_nat nat_plus_wf istype-sqequal set_subtype_base le_wf int_subtype_base less-iff-le subtract_wf le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul minus-zero omega-shadow mul-distributes mul-commutes mul-associates mul-swap nat_properties subtype_base_sq istype-int not-lt-2 le-add-cancel-alt decidable__lt iff_weakening_equal subtype_rel_self true_wf squash_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin Error :dependent_pairFormation_alt,  cut introduction extract_by_obid isectElimination hypothesis hypothesisEquality sqequalRule independent_pairFormation because_Cache Error :productIsType,  Error :functionIsType,  applyEquality Error :lambdaEquality_alt,  setElimination rename Error :dependent_set_memberEquality_alt,  addEquality natural_numberEquality dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination Error :isect_memberEquality_alt,  minusEquality Error :equalityIstype,  Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality equalityTransitivity equalitySymmetry intEquality promote_hyp multiplyEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[s,t,r:stream(T)].    (s-sub(T;s;t)  {}\mRightarrow{}  s-sub(T;t;r)  {}\mRightarrow{}  s-sub(T;s;r))



Date html generated: 2019_06_20-PM-00_37_59
Last ObjectModification: 2019_03_06-AM-11_06_38

Theory : co-recursion


Home Index