Nuprl Lemma : stump'_wf

[T:Type]. ∀[t:wfd-tree(T)].  (stump'(t) ∈ n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  stump': stump'(t) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stump': stump'(t) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} subtype_rel: A ⊆B band: p ∧b q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T subtract: m top: Top true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int empty-wfd-tree_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add bnot_wf stump_wf int_seg_wf subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel subtype_rel_dep_function int_seg_subtype int_upper_wf add-mul-special zero-mul add-zero le-add-cancel2 nat_wf wfd-tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination cumulativity hypothesisEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation applyEquality functionExtensionality imageMemberEquality baseClosed imageElimination addEquality minusEquality isect_memberEquality voidEquality intEquality multiplyEquality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:wfd-tree(T)].    (stump'(t)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2017_04_14-AM-07_45_27
Last ObjectModification: 2017_02_27-PM-03_16_15

Theory : co-recursion


Home Index