Nuprl Lemma : howard-bar-rec_wf

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ. ∀bar:∀s:ℕ ⟶ ℕ. ⇃(∃n:ℕB[n;s]). ∀mon:∀n:ℕ. ∀m:ℕn. ∀s:ℕn ⟶ ℕ.  (B[m;s]  B[n;s]).
base:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s]). ∀ind:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]).
  ⇃(Q[0;seq-normalize(0;⊥)])


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-normalize: seq-normalize(n;s) seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  so_lambda: λ2y.t[x; y] lelt: i ≤ j < k guard: {T} int_seg: {i..j-} less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  so_apply: x[s1;s2] implies:  Q nat: so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T all: x:A. B[x] isl: isl(x) squash: T assert: b ifthenelse: if then else fi  btrue: tt true: True howard-bar-rec: howard-bar-rec(M;mon;base;ind;n;s) bfalse: ff sq_stable: SqStable(P) ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb rev_implies:  Q iff: ⇐⇒ Q seq-add: s.x@n
Lemmas referenced :  equiv_rel_true true_wf exists_wf quotient_wf subtype_rel_self int_formula_prop_less_lemma intformless_wf int_seg_properties int_seg_subtype subtype_rel_dep_function false_wf int_seg_subtype_nat seq-add_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_wf nat_wf all_wf strong-continuity-rel-unique-pair subtype_rel_function istype-false istype-nat implies-quotient-true ext2Baire_wf full-omega-unsat istype-int istype-void istype-le unit_wf2 equal_wf assert_wf equal-wf-base set_subtype_base int_subtype_base seq-normalize_wf istype-assert btrue_wf bfalse_wf seq-normalize-equal isl_wf sq_stable__le le_weakening2 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff less_than_wf istype-less_than
Rules used in proof :  cumulativity productElimination universeEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination addEquality dependent_set_memberEquality hypothesisEquality functionExtensionality applyEquality because_Cache rename setElimination natural_numberEquality functionEquality lambdaEquality sqequalRule hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :lambdaEquality_alt,  Error :lambdaFormation_alt,  Error :functionIsType,  Error :inhabitedIsType,  closedConclusion unionEquality productEquality Error :dependent_set_memberEquality_alt,  approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :inlEquality_alt,  Error :dependent_pairEquality_alt,  Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :unionIsType,  Error :productIsType,  imageElimination SquashedBarInduction hyp_replacement applyLambdaEquality instantiate imageMemberEquality baseClosed Error :functionExtensionality_alt,  equalityElimination promote_hyp

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}bar:\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  B[n;s]).  \mforall{}mon:\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                                        (B[m;s]  {}\mRightarrow{}  B[n;s]).
\mforall{}base:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]).  \mforall{}ind:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                        ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]).
    \00D9(Q[0;seq-normalize(0;\mbot{})])



Date html generated: 2019_06_20-PM-03_06_11
Last ObjectModification: 2019_01_13-AM-09_04_24

Theory : continuity


Home Index