Nuprl Lemma : howard-bar-rec_wf
∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ. ∀bar:∀s:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;s]). ∀mon:∀n:ℕ. ∀m:ℕn. ∀s:ℕn ⟶ ℕ.  (B[m;s] ⇒ B[n;s]).
∀base:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] ⇒ Q[n;s]). ∀ind:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) ⇒ Q[n;s]).
  ⇃(Q[0;seq-normalize(0;⊥)])
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
seq-normalize: seq-normalize(n;s), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
nat: ℕ, 
bottom: ⊥, 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
so_lambda: λ2x y.t[x; y], 
lelt: i ≤ j < k, 
guard: {T}, 
int_seg: {i..j-}, 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
all: ∀x:A. B[x], 
isl: isl(x), 
squash: ↓T, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
howard-bar-rec: howard-bar-rec(M;mon;base;ind;n;s), 
bfalse: ff, 
sq_stable: SqStable(P), 
ext2Baire: ext2Baire(n;f;d), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
bnot: ¬bb, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
seq-add: s.x@n
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
exists_wf, 
quotient_wf, 
subtype_rel_self, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_properties, 
int_seg_subtype, 
subtype_rel_dep_function, 
false_wf, 
int_seg_subtype_nat, 
seq-add_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
int_seg_wf, 
nat_wf, 
all_wf, 
strong-continuity-rel-unique-pair, 
subtype_rel_function, 
istype-false, 
istype-nat, 
implies-quotient-true, 
ext2Baire_wf, 
full-omega-unsat, 
istype-int, 
istype-void, 
istype-le, 
unit_wf2, 
equal_wf, 
assert_wf, 
equal-wf-base, 
set_subtype_base, 
int_subtype_base, 
seq-normalize_wf, 
istype-assert, 
btrue_wf, 
bfalse_wf, 
seq-normalize-equal, 
isl_wf, 
sq_stable__le, 
le_weakening2, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
less_than_wf, 
istype-less_than
Rules used in proof : 
cumulativity, 
productElimination, 
universeEquality, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
addEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :lambdaEquality_alt, 
Error :lambdaFormation_alt, 
Error :functionIsType, 
Error :inhabitedIsType, 
closedConclusion, 
unionEquality, 
productEquality, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :inlEquality_alt, 
Error :dependent_pairEquality_alt, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
Error :unionIsType, 
Error :productIsType, 
imageElimination, 
SquashedBarInduction, 
hyp_replacement, 
applyLambdaEquality, 
instantiate, 
imageMemberEquality, 
baseClosed, 
Error :functionExtensionality_alt, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}bar:\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  B[n;s]).  \mforall{}mon:\mforall{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}n.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                                        (B[m;s]  {}\mRightarrow{}  B[n;s]).
\mforall{}base:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]).  \mforall{}ind:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                        ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]).
    \00D9(Q[0;seq-normalize(0;\mbot{})])
Date html generated:
2019_06_20-PM-03_06_11
Last ObjectModification:
2019_01_13-AM-09_04_24
Theory : continuity
Home
Index