Nuprl Lemma : strong-continuity-rel-unique-pair

P:(ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ. ∀F:∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ(P n)).
  ⇃(∃M:n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (P ext2Baire(n;s;0) k)?)
     ∀f:ℕ ⟶ ℕ
       ∃n:ℕ
        ∃k:ℕn
         ∃p:P ext2Baire(n;f;0) k
          (((M f) (inl <k, p>) ∈ (k:ℕn × (P ext2Baire(n;f;0) k)?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ)))))


Proof




Definitions occuring in Statement :  ext2Baire: ext2Baire(n;f;d) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s] exists: x:A. B[x] guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] spreadn: spread4 exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b isl: isl(x) ext2Baire: ext2Baire(n;f;d) true: True nequal: a ≠ b ∈ 
Lemmas referenced :  strong-continuity-rel-unique implies-quotient-true exists_wf int_seg_wf unit_wf2 all_wf int_seg_subtype_nat false_wf equal_wf subtype_rel_dep_function nat_wf subtype_rel_self subtype_rel_union assert_wf isl_wf ext2Baire_wf le_wf quotient_wf true_wf equiv_rel_true eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_properties btrue_wf bfalse_wf lt_int_wf assert_of_lt_int less_than_wf decidable__equal_int and_wf set_subtype_base int_subtype_base union_subtype_base unit_subtype_base decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination functionEquality because_Cache natural_numberEquality setElimination rename hypothesis unionEquality sqequalRule lambdaEquality productEquality applyEquality functionExtensionality independent_isectElimination independent_pairFormation inlEquality dependent_set_memberEquality dependent_pairEquality independent_functionElimination productElimination cumulativity universeEquality dependent_pairFormation unionElimination equalityElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate inrEquality axiomEquality applyLambdaEquality

Latex:
\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mforall{}F:\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (P  f  n)).
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  s:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (k:\mBbbN{}n  \mtimes{}  (P  ext2Baire(n;s;0)  k)?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              \mexists{}n:\mBbbN{}
                \mexists{}k:\mBbbN{}n.  \mexists{}p:P  ext2Baire(n;f;0)  k.  (((M  n  f)  =  (inl  <k,  p>))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n)\000C))))



Date html generated: 2017_04_17-AM-10_02_44
Last ObjectModification: 2017_02_27-PM-05_54_46

Theory : continuity


Home Index