Nuprl Lemma : not-not-Ramsey
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. (¬(∀s:StrictInc. ∃n:ℕ. (¬homogeneous(R;n;s))))
Proof
Definitions occuring in Statement :
strict-inc: StrictInc
,
homogeneous: homogeneous(R;n;s)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
so_lambda: λ2x y.t[x; y]
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
prop: ℙ
,
so_apply: x[s1;s2]
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
squash: ↓T
,
strict-inc: StrictInc
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
weakly-safe-seq: weakly-safe-seq(R;n;s)
,
weakly-infinite: w∃∞p.S[p]
,
homogeneous: homogeneous(R;n;s)
,
strictly-increasing-seq: strictly-increasing-seq(n;s)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
less_than: a < b
,
seq-add: s.x@n
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
guard: {T}
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
true: True
,
cand: A c∧ B
Lemmas referenced :
monotone-bar-induction-strict,
strictly-increasing-seq_wf,
int_seg_wf,
nat_wf,
not_wf,
homogeneous_wf,
weakly-safe-seq_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
le_wf,
seq-add_wf,
set_wf,
all_wf,
squash_wf,
strict-inc_wf,
exists_wf,
subtype_rel_dep_function,
int_seg_subtype_nat,
false_wf,
subtype_rel_self,
homogeneous-extension-implies,
less_than_wf,
no-weakly-safe-extensions,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
lelt_wf,
true_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
int_seg_properties,
intformeq_wf,
int_formula_prop_eq_lemma,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
le2-homogeneous
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
sqequalRule,
lambdaEquality,
hypothesisEquality,
functionExtensionality,
applyEquality,
hypothesis,
because_Cache,
natural_numberEquality,
setElimination,
rename,
functionEquality,
setEquality,
independent_functionElimination,
voidElimination,
dependent_set_memberEquality,
addEquality,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
independent_pairFormation,
computeAll,
imageElimination,
imageMemberEquality,
baseClosed,
cumulativity,
universeEquality,
productElimination,
productEquality,
hyp_replacement,
equalitySymmetry,
equalityTransitivity,
equalityElimination,
int_eqReduceTrueSq,
promote_hyp,
instantiate,
int_eqReduceFalseSq
Latex:
\mforall{}[R:\mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbP{}]. (\mneg{}(\mforall{}s:StrictInc. \mexists{}n:\mBbbN{}. (\mneg{}homogeneous(R;n;s))))
Date html generated:
2017_04_20-AM-07_23_51
Last ObjectModification:
2017_02_27-PM-05_59_15
Theory : continuity
Home
Index