Nuprl Lemma : not-not-Ramsey
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. (¬(∀s:StrictInc. ∃n:ℕ. (¬homogeneous(R;n;s))))
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc, 
homogeneous: homogeneous(R;n;s), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
so_lambda: λ2x y.t[x; y], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
so_apply: x[s1;s2], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
strict-inc: StrictInc, 
le: A ≤ B, 
less_than': less_than'(a;b), 
weakly-safe-seq: weakly-safe-seq(R;n;s), 
weakly-infinite: w∃∞p.S[p], 
homogeneous: homogeneous(R;n;s), 
strictly-increasing-seq: strictly-increasing-seq(n;s), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
seq-add: s.x@n, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
guard: {T}, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
true: True, 
cand: A c∧ B
Lemmas referenced : 
monotone-bar-induction-strict, 
strictly-increasing-seq_wf, 
int_seg_wf, 
nat_wf, 
not_wf, 
homogeneous_wf, 
weakly-safe-seq_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
seq-add_wf, 
set_wf, 
all_wf, 
squash_wf, 
strict-inc_wf, 
exists_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
homogeneous-extension-implies, 
less_than_wf, 
no-weakly-safe-extensions, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
true_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
le2-homogeneous
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
functionEquality, 
setEquality, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
universeEquality, 
productElimination, 
productEquality, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
int_eqReduceTrueSq, 
promote_hyp, 
instantiate, 
int_eqReduceFalseSq
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mneg{}(\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  (\mneg{}homogeneous(R;n;s))))
Date html generated:
2017_04_20-AM-07_23_51
Last ObjectModification:
2017_02_27-PM-05_59_15
Theory : continuity
Home
Index