Nuprl Lemma : not-not-Ramsey

[R:ℕ ⟶ ℕ ⟶ ℙ]. (∀s:StrictInc. ∃n:ℕhomogeneous(R;n;s))))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc homogeneous: homogeneous(R;n;s) nat: uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False so_lambda: λ2y.t[x; y] all: x:A. B[x] subtype_rel: A ⊆B nat: prop: so_apply: x[s1;s2] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] squash: T strict-inc: StrictInc le: A ≤ B less_than': less_than'(a;b) weakly-safe-seq: weakly-safe-seq(R;n;s) weakly-infinite: w∃∞p.S[p] homogeneous: homogeneous(R;n;s) strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) guard: {T} bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  true: True cand: c∧ B
Lemmas referenced :  monotone-bar-induction-strict strictly-increasing-seq_wf int_seg_wf nat_wf not_wf homogeneous_wf weakly-safe-seq_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf seq-add_wf set_wf all_wf squash_wf strict-inc_wf exists_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self homogeneous-extension-implies less_than_wf no-weakly-safe-extensions decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf true_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_seg_properties intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int le2-homogeneous
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality hypothesisEquality functionExtensionality applyEquality hypothesis because_Cache natural_numberEquality setElimination rename functionEquality setEquality independent_functionElimination voidElimination dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageElimination imageMemberEquality baseClosed cumulativity universeEquality productElimination productEquality hyp_replacement equalitySymmetry equalityTransitivity equalityElimination int_eqReduceTrueSq promote_hyp instantiate int_eqReduceFalseSq

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mneg{}(\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  (\mneg{}homogeneous(R;n;s))))



Date html generated: 2017_04_20-AM-07_23_51
Last ObjectModification: 2017_02_27-PM-05_59_15

Theory : continuity


Home Index