Nuprl Lemma : poss-maj-member
∀T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x:T.  (snd(poss-maj(eq;L;x)) ∈ [x / L])
Proof
Definitions occuring in Statement : 
poss-maj: poss-maj(eq;L;x), 
l_member: (x ∈ l), 
cons: [a / b], 
list: T List, 
deq: EqDecider(T), 
pi2: snd(t), 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
poss-maj: poss-maj(eq;L;x), 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
deq: EqDecider(T), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eqof: eqof(d), 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_upper: {i...}, 
so_apply: x[s1;s2], 
so_apply: x[s], 
pi2: snd(t), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
gt: i > j
Lemmas referenced : 
list_wf, 
deq_wf, 
list_induction, 
all_wf, 
nat_wf, 
l_member_wf, 
list_accum_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
false_wf, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
subtract_wf, 
int_upper_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
pi2_wf, 
cons_wf, 
list_accum_nil_lemma, 
cons_member, 
nil_wf, 
list_accum_cons_lemma, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqof_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
ifthenelse_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
productElimination, 
applyEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
independent_pairEquality, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
hypothesis_subsumption, 
productEquality, 
inlFormation, 
baseClosed, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
spreadEquality, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.    (snd(poss-maj(eq;L;x))  \mmember{}  [x  /  L])
Date html generated:
2017_04_17-AM-09_08_45
Last ObjectModification:
2017_02_27-PM-05_17_35
Theory : decidable!equality
Home
Index