Nuprl Lemma : poss-maj-member

T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x:T.  (snd(poss-maj(eq;L;x)) ∈ [x L])


Proof




Definitions occuring in Statement :  poss-maj: poss-maj(eq;L;x) l_member: (x ∈ l) cons: [a b] list: List deq: EqDecider(T) pi2: snd(t) all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] poss-maj: poss-maj(eq;L;x) so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] deq: EqDecider(T) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a eqof: eqof(d) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} so_apply: x[s1;s2] so_apply: x[s] pi2: snd(t) iff: ⇐⇒ Q rev_implies:  Q gt: i > j
Lemmas referenced :  list_wf deq_wf list_induction all_wf nat_wf l_member_wf list_accum_wf bool_wf eqtt_to_assert safe-assert-deq nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int false_wf neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies zero-add subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma pi2_wf cons_wf list_accum_nil_lemma cons_member nil_wf list_accum_cons_lemma equal-wf-T-base assert_wf bnot_wf not_wf eqof_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot ifthenelse_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesis universeEquality sqequalRule lambdaEquality because_Cache productElimination applyEquality setElimination rename unionElimination equalityElimination independent_isectElimination independent_pairEquality dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate independent_functionElimination hypothesis_subsumption productEquality inlFormation baseClosed addLevel impliesFunctionality levelHypothesis spreadEquality inrFormation hyp_replacement applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.    (snd(poss-maj(eq;L;x))  \mmember{}  [x  /  L])



Date html generated: 2017_04_17-AM-09_08_45
Last ObjectModification: 2017_02_27-PM-05_17_35

Theory : decidable!equality


Home Index