Nuprl Lemma : insert-no-combine-sorted-by

[T:Type]
  ∀cmp:comparison(T)
    ((∀u,x,z:T.  ((0 ≤ (cmp u))  (0 ≤ (cmp z))  (0 ≤ (cmp z))))
     (∀L:T List. ∀x:T.  (sorted-by(λx,y. (0 ≤ (cmp y));L)  sorted-by(λx,y. (0 ≤ (cmp y));insert-no-combine(cmp;x\000C;L)))))


Proof




Definitions occuring in Statement :  insert-no-combine: insert-no-combine(cmp;x;l) comparison: comparison(T) sorted-by: sorted-by(R;L) list: List uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] natural_number: $n universe: Type
Definitions unfolded in proof :  so_apply: x[s] comparison: comparison(T) prop: so_lambda: λ2x.t[x] member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x] le: A ≤ B false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] it: nil: [] uimplies: supposing a select: L[n] sorted-by: sorted-by(R;L) insert-no-combine: insert-no-combine(cmp;x;l) assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q bfalse: ff cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt unit: Unit bool: 𝔹 squash: T less_than: a < b decidable: Dec(P) l_all: (∀x∈L.P[x]) subtype_rel: A ⊆B true: True sq_stable: SqStable(P)
Lemmas referenced :  comparison_wf list_wf insert-no-combine_wf le_wf l_member_wf sorted-by_wf all_wf list_induction int_seg_wf nil_wf cons_wf select_wf less_than'_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties length_of_cons_lemma list_ind_nil_lemma base_wf stuck-spread length_of_nil_lemma assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert sorted-by-cons assert_of_le_int eqtt_to_assert bool_wf le_int_wf list_ind_cons_lemma decidable__lt int_formula_prop_not_lemma intformnot_wf satisfiable-full-omega-tt decidable__le length_wf l_all_cons cons_member member-insert-no-combine l_all_iff int_term_value_minus_lemma itermMinus_wf iff_weakening_equal true_wf squash_wf sq_stable__le
Rules used in proof :  universeEquality independent_functionElimination dependent_functionElimination setEquality applyEquality natural_numberEquality rename setElimination hypothesis because_Cache functionEquality cumulativity lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality independent_pairFormation intEquality int_eqEquality dependent_pairFormation approximateComputation productElimination voidEquality voidElimination isect_memberEquality independent_isectElimination baseClosed instantiate promote_hyp equalityElimination unionElimination imageElimination computeAll applyLambdaEquality hyp_replacement minusEquality imageMemberEquality functionExtensionality

Latex:
\mforall{}[T:Type]
    \mforall{}cmp:comparison(T)
        ((\mforall{}u,x,z:T.    ((0  \mleq{}  (cmp  x  u))  {}\mRightarrow{}  (0  \mleq{}  (cmp  u  z))  {}\mRightarrow{}  (0  \mleq{}  (cmp  x  z))))
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x:T.
                    (sorted-by(\mlambda{}x,y.  (0  \mleq{}  (cmp  x  y));L)
                    {}\mRightarrow{}  sorted-by(\mlambda{}x,y.  (0  \mleq{}  (cmp  x  y));insert-no-combine(cmp;x;L)))))



Date html generated: 2018_05_21-PM-00_43_57
Last ObjectModification: 2018_05_18-PM-04_18_29

Theory : list_1


Home Index