Nuprl Lemma : rm-zeros_wf
∀[n:ℕ+]. ∀[p:polynom(n - 1) List].  (rm-zeros(n - 1;p) ∈ polynom(n))
Proof
Definitions occuring in Statement : 
rm-zeros: rm-zeros(n;p), 
polynom: polynom(n), 
list: T List, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtract: n - m, 
natural_number: $n
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
polyform: polyform(n), 
polyform-lead-nonzero: polyform-lead-nonzero(n;p), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
unit: Unit, 
bool: 𝔹, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
sq_type: SQType(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
it: ⋅, 
nil: [], 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
colength: colength(L), 
cons: [a / b], 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
rm-zeros: rm-zeros(n;p), 
guard: {T}, 
subtype_rel: A ⊆r B, 
ge: i ≥ j , 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
nat: ℕ, 
member: t ∈ T, 
polynom: polynom(n), 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
length_wf, 
reduce_hd_cons_lemma, 
length_of_cons_lemma, 
cons_wf, 
poly-zero_wf, 
polynom_subtype_polyform, 
polyform_wf, 
subtype_rel_list, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
length_of_nil_lemma, 
nat_plus_subtype_nat, 
polyform-lead-nonzero_wf, 
nil_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
list_ind_cons_lemma, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
equal_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
spread_cons_lemma, 
product_subtype_list, 
list_ind_nil_lemma, 
list-cases, 
less_than_irreflexivity, 
less_than_transitivity1, 
colength_wf_list, 
nat_wf, 
less_than_wf, 
ge_wf, 
nat_properties, 
not_wf, 
bnot_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
eq_int_wf, 
nat_plus_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
subtract_wf, 
polynom_wf, 
list_wf
Rules used in proof : 
impliesFunctionality, 
equalityElimination, 
imageElimination, 
cumulativity, 
instantiate, 
addEquality, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
applyLambdaEquality, 
applyEquality, 
axiomEquality, 
independent_functionElimination, 
intWeakElimination, 
lambdaFormation, 
because_Cache, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_set_memberEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:polynom(n  -  1)  List].    (rm-zeros(n  -  1;p)  \mmember{}  polynom(n))
Date html generated:
2017_04_17-AM-09_06_11
Last ObjectModification:
2017_04_13-PM-02_12_08
Theory : list_1
Home
Index