Nuprl Lemma : prime-sum-of-two-squares-iff-one-mod-four
∀p:{p:{2...}| prime(p)} . ((p = 2 ∈ ℤ) ∨ (∃k:ℤ. (p = (1 + (4 * k)) ∈ ℤ)) 
⇐⇒ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
ge: i ≥ j 
Lemmas referenced : 
or_wf, 
equal-wf-T-base, 
exists_wf, 
int_subtype_base, 
set_wf, 
int_upper_wf, 
prime_wf, 
prime-sum-of-two-squares-if-one-mod-four, 
int_upper_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
subtype_base_sq, 
absval_squared, 
div_rem_sum, 
absval_wf, 
nat_wf, 
equal-wf-base, 
nequal_wf, 
rem_bounds_1, 
less_than_wf, 
lelt_wf, 
int_seg_wf, 
divide_wf, 
equal_wf, 
int_seg_properties, 
int_seg_cases, 
int_seg_subtype, 
false_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
mul-distributes, 
mul-distributes-right, 
mul-associates, 
add-associates, 
mul-swap, 
mul-commutes, 
zero-mul, 
zero-add, 
add-zero, 
add-commutes, 
add-swap, 
le_wf, 
not-prime-mult, 
nat_properties, 
prime-mult, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assoced_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
baseClosed, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
applyEquality, 
natural_numberEquality, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
remainderEquality, 
imageMemberEquality, 
addEquality, 
multiplyEquality, 
hypothesis_subsumption, 
inrFormation, 
inlFormation, 
imageElimination, 
universeEquality, 
minusEquality
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\} 
    ((p  =  2)  \mvee{}  (\mexists{}k:\mBbbZ{}.  (p  =  (1  +  (4  *  k))))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b))))
Date html generated:
2019_06_20-PM-02_41_46
Last ObjectModification:
2018_09_24-PM-02_53_03
Theory : num_thy_1
Home
Index