Nuprl Lemma : prime-sum-of-two-squares-iff-one-mod-four

p:{p:{2...}| prime(p)} ((p 2 ∈ ℤ) ∨ (∃k:ℤ(p (1 (4 k)) ∈ ℤ)) ⇐⇒ ∃a,b:ℤ(p ((a a) (b b)) ∈ ℤ))


Proof




Definitions occuring in Statement :  prime: prime(a) int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q set: {x:A| B[x]}  multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] int_upper: {i...} so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q or: P ∨ Q decidable: Dec(P) uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top sq_type: SQType(T) guard: {T} nat: int_nzero: -o true: True nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B ge: i ≥ 
Lemmas referenced :  or_wf equal-wf-T-base exists_wf int_subtype_base set_wf int_upper_wf prime_wf prime-sum-of-two-squares-if-one-mod-four int_upper_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf subtype_base_sq absval_squared div_rem_sum absval_wf nat_wf equal-wf-base nequal_wf rem_bounds_1 less_than_wf lelt_wf int_seg_wf divide_wf equal_wf int_seg_properties int_seg_cases int_seg_subtype false_wf intformless_wf intformle_wf int_formula_prop_less_lemma int_formula_prop_le_lemma mul-distributes mul-distributes-right mul-associates add-associates mul-swap mul-commutes zero-mul zero-add add-zero add-commutes add-swap le_wf not-prime-mult nat_properties prime-mult squash_wf true_wf subtype_rel_self iff_weakening_equal assoced_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality setElimination rename hypothesisEquality hypothesis baseClosed sqequalRule lambdaEquality because_Cache baseApply closedConclusion applyEquality natural_numberEquality unionElimination dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality productElimination instantiate cumulativity dependent_set_memberEquality remainderEquality imageMemberEquality addEquality multiplyEquality hypothesis_subsumption inrFormation inlFormation imageElimination universeEquality minusEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\} 
    ((p  =  2)  \mvee{}  (\mexists{}k:\mBbbZ{}.  (p  =  (1  +  (4  *  k))))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b))))



Date html generated: 2019_06_20-PM-02_41_46
Last ObjectModification: 2018_09_24-PM-02_53_03

Theory : num_thy_1


Home Index