Nuprl Lemma : sum_switch

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[i:ℕ1].  (f[(i, 1) x] x < n) = Σ(f[x] x < n) ∈ ℤ)


Proof




Definitions occuring in Statement :  flip: (i, j) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: le: A ≤ B less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} less_than': less_than'(a;b) subtype_rel: A ⊆B nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 flip: (i, j) iff: ⇐⇒ Q rev_implies:  Q lt_int: i <j subtract: m true: True
Lemmas referenced :  int_seg_wf subtract_wf flip_wf nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than int_seg_properties decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma subtype_base_sq int_subtype_base sum_split lelt_wf false_wf int_seg_subtype_nat sum_functionality neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert not_wf bnot_wf int_formula_prop_eq_lemma intformeq_wf equal_wf assert_wf equal-wf-T-base bool_wf eq_int_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot primrec1_lemma squash_wf true_wf istype-universe add-comm subtype_rel_self iff_weakening_equal zero-add add-commutes sum-as-primrec primrec-unroll add-member-int_seg1 le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache sqequalRule Error :isect_memberEquality_alt,  hypothesisEquality axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality voidElimination Error :productIsType,  addEquality imageElimination instantiate cumulativity intEquality applyEquality equalityTransitivity equalitySymmetry voidEquality isect_memberEquality dependent_pairFormation dependent_set_memberEquality functionExtensionality lambdaEquality lambdaFormation promote_hyp equalityElimination baseClosed impliesFunctionality Error :lambdaFormation_alt,  Error :equalityIstype,  universeEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[i:\mBbbN{}n  -  1].    (\mSigma{}(f[(i,  i  +  1)  x]  |  x  <  n)  =  \mSigma{}(f[x]  |  x  <  n))



Date html generated: 2019_06_20-PM-02_29_56
Last ObjectModification: 2019_02_06-PM-03_51_25

Theory : num_thy_1


Home Index