Nuprl Lemma : sorted-seq-iff

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀s:sequence(T). (Trans(T;x,y.R[x;y])  (sorted-seq(x,y.R[x;y];s) ⇐⇒ ∀i:ℕ||s|| 1. R[s[i];s[i 1]]))


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) sorted-seq: sorted-seq(x,y.R[x; y];s) seq-item: s[i] seq-len: ||s|| sequence: sequence(T) int_seg: {i..j-} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q sorted-seq: sorted-seq(x,y.R[x; y];s) member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T cand: c∧ B le: A ≤ B subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m less_than': less_than'(a;b) true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_stable: SqStable(P) sq_type: SQType(T) ge: i ≥  nat_plus: + top: Top trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  decidable__lt seq-len_wf istype-false not-lt-2 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 istype-le istype-less_than add-member-int_seg2 decidable__le subtract_wf not-le-2 zero-add add-zero add-mul-special zero-mul le-add-cancel int_seg_wf sorted-seq_wf seq-item_wf trans_wf sequence_wf istype-universe le_weakening2 istype-sqequal set_subtype_base le_wf int_subtype_base add-is-int-iff istype-int primrec-wf2 all_wf less_than_wf istype-nat subtract_nat_wf sq_stable__le subtype_base_sq minus-zero minus-minus le_reflexive one-mul two-mul mul-distributes-right mul-associates omega-shadow mul-swap mul-distributes mul-commutes le-add-cancel-alt nat_properties int_seg_properties lelt_wf istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin setElimination rename dependent_set_memberEquality_alt hypothesisEquality productElimination imageElimination introduction extract_by_obid isectElimination applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule unionElimination voidElimination independent_functionElimination because_Cache independent_isectElimination addEquality natural_numberEquality minusEquality Error :memTop,  productIsType closedConclusion multiplyEquality universeIsType functionIsType universeEquality instantiate dependent_pairFormation_alt intEquality equalityIstype promote_hyp baseApply baseClosed setIsType functionEquality imageMemberEquality cumulativity isect_memberEquality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}s:sequence(T)
        (Trans(T;x,y.R[x;y])  {}\mRightarrow{}  (sorted-seq(x,y.R[x;y];s)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i:\mBbbN{}||s||  -  1.  R[s[i];s[i  +  1]]))



Date html generated: 2020_05_19-PM-09_36_26
Last ObjectModification: 2020_02_07-AM-09_44_18

Theory : rel_1


Home Index