Nuprl Lemma : sorted-seq-iff
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀s:sequence(T). (Trans(T;x,y.R[x;y]) 
⇒ (sorted-seq(x,y.R[x;y];s) 
⇐⇒ ∀i:ℕ||s|| - 1. R[s[i];s[i + 1]]))
Proof
Definitions occuring in Statement : 
trans: Trans(T;x,y.E[x; y])
, 
sorted-seq: sorted-seq(x,y.R[x; y];s)
, 
seq-item: s[i]
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
sorted-seq: sorted-seq(x,y.R[x; y];s)
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
sq_type: SQType(T)
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
top: Top
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
decidable__lt, 
seq-len_wf, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
istype-le, 
istype-less_than, 
add-member-int_seg2, 
decidable__le, 
subtract_wf, 
not-le-2, 
zero-add, 
add-zero, 
add-mul-special, 
zero-mul, 
le-add-cancel, 
int_seg_wf, 
sorted-seq_wf, 
seq-item_wf, 
trans_wf, 
sequence_wf, 
istype-universe, 
le_weakening2, 
istype-sqequal, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
add-is-int-iff, 
istype-int, 
primrec-wf2, 
all_wf, 
less_than_wf, 
istype-nat, 
subtract_nat_wf, 
sq_stable__le, 
subtype_base_sq, 
minus-zero, 
minus-minus, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
mul-associates, 
omega-shadow, 
mul-swap, 
mul-distributes, 
mul-commutes, 
le-add-cancel-alt, 
nat_properties, 
int_seg_properties, 
lelt_wf, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
productElimination, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
minusEquality, 
Error :memTop, 
productIsType, 
closedConclusion, 
multiplyEquality, 
universeIsType, 
functionIsType, 
universeEquality, 
instantiate, 
dependent_pairFormation_alt, 
intEquality, 
equalityIstype, 
promote_hyp, 
baseApply, 
baseClosed, 
setIsType, 
functionEquality, 
imageMemberEquality, 
cumulativity, 
isect_memberEquality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}s:sequence(T)
        (Trans(T;x,y.R[x;y])  {}\mRightarrow{}  (sorted-seq(x,y.R[x;y];s)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i:\mBbbN{}||s||  -  1.  R[s[i];s[i  +  1]]))
Date html generated:
2020_05_19-PM-09_36_26
Last ObjectModification:
2020_02_07-AM-09_44_18
Theory : rel_1
Home
Index