Nuprl Lemma : decidable__rel_exp

k,n:ℕ.  ∀[R:ℕn ⟶ ℕn ⟶ ℙ]. ((∀i,j:ℕn.  Dec(i j))  (∀i,j:ℕn.  Dec(i R^k j)))


Proof




Definitions occuring in Statement :  rel_exp: R^n int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt infix_ap: y uall: [x:A]. B[x] implies:  Q member: t ∈ T nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b subtype_rel: A ⊆B nequal: a ≠ b ∈  decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) true: True top: Top
Lemmas referenced :  decidable__equal_int_seg int_seg_wf all_wf decidable_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__exists_int_seg infix_ap_wf rel_exp_wf subtract_wf decidable__le false_wf not-le-2 not-equal-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf decidable__and2 nat_wf uall_wf set_wf less_than_wf primrec-wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalRule isect_memberFormation introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis isectElimination lambdaEquality because_Cache applyEquality functionExtensionality functionEquality cumulativity universeEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination voidElimination dependent_pairFormation promote_hyp instantiate productEquality dependent_set_memberEquality independent_pairFormation addEquality minusEquality isect_memberEquality voidEquality intEquality

Latex:
\mforall{}k,n:\mBbbN{}.    \mforall{}[R:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i,j:\mBbbN{}n.    Dec(i  R  j))  {}\mRightarrow{}  (\mforall{}i,j:\mBbbN{}n.    Dec(i  rel\_exp(\mBbbN{}n;  R;  k)  j)))



Date html generated: 2017_04_14-AM-07_38_07
Last ObjectModification: 2017_02_27-PM-03_10_13

Theory : relations


Home Index