Nuprl Lemma : rel-path-between-append
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀L1,L2:T List. ∀x,y,z:T.
    (rel-path-between(T;R;x;y;L1)
    
⇒ rel-path-between(T;R;y;z;L2)
    
⇒ Refl(T;v1,v2.R v1 v2)
    
⇒ rel-path-between(T;R;x;z;L1 @ L2))
Proof
Definitions occuring in Statement : 
rel-path-between: rel-path-between(T;R;x;y;L)
, 
append: as @ bs
, 
list: T List
, 
refl: Refl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
rel-path-between: rel-path-between(T;R;x;y;L)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
listp: A List+
, 
subtype_rel: A ⊆r B
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
bfalse: ff
, 
rel-path: rel-path(R;L)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
guard: {T}
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
last: last(L)
, 
subtract: n - m
, 
refl: Refl(T;x,y.E[x; y])
, 
gt: i > j
Lemmas referenced : 
refl_wf, 
rel-path-between_wf, 
list_wf, 
istype-universe, 
length-append, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
hd-append-sq, 
subtype_rel_list, 
top_wf, 
istype-less_than, 
last_append, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
istype-void, 
int_trichot, 
subtract_wf, 
int_seg_wf, 
append_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
select_append_front, 
subtype_rel_self, 
iff_weakening_equal, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
select_append, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
non_neg_length, 
length_append, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
decidable__equal_int, 
select-as-hd, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-add, 
zero-mul, 
add-member-int_seg2, 
add-commutes, 
select_wf, 
select_append_back, 
squash_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
hypothesis, 
functionIsType, 
because_Cache, 
universeEquality, 
instantiate, 
productElimination, 
independent_pairFormation, 
Error :memTop, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
unionElimination, 
imageElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
dependent_set_memberEquality_alt, 
promote_hyp, 
hypothesis_subsumption, 
setElimination, 
rename, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
equalityIstype, 
cumulativity, 
intEquality, 
multiplyEquality, 
hyp_replacement, 
closedConclusion, 
minusEquality, 
productEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L1,L2:T  List.  \mforall{}x,y,z:T.
        (rel-path-between(T;R;x;y;L1)
        {}\mRightarrow{}  rel-path-between(T;R;y;z;L2)
        {}\mRightarrow{}  Refl(T;v1,v2.R  v1  v2)
        {}\mRightarrow{}  rel-path-between(T;R;x;z;L1  @  L2))
Date html generated:
2020_05_19-PM-09_52_53
Last ObjectModification:
2020_02_06-PM-09_36_48
Theory : relations2
Home
Index