Nuprl Lemma : rel-path-between-append

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀L1,L2:T List. ∀x,y,z:T.
    (rel-path-between(T;R;x;y;L1)
     rel-path-between(T;R;y;z;L2)
     Refl(T;v1,v2.R v1 v2)
     rel-path-between(T;R;x;z;L1 L2))


Proof




Definitions occuring in Statement :  rel-path-between: rel-path-between(T;R;x;y;L) append: as bs list: List refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: rel-path-between: rel-path-between(T;R;x;y;L) and: P ∧ Q cand: c∧ B decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False listp: List+ subtype_rel: A ⊆B assert: b ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) cons: [a b] bfalse: ff rel-path: rel-path(R;L) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B guard: {T} infix_ap: y iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) ge: i ≥  sq_type: SQType(T) bnot: ¬bb so_lambda: λ2x.t[x] so_apply: x[s] last: last(L) subtract: m refl: Refl(T;x,y.E[x; y]) gt: i > j
Lemmas referenced :  refl_wf rel-path-between_wf list_wf istype-universe length-append decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf hd-append-sq subtype_rel_list top_wf istype-less_than last_append list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma istype-void int_trichot subtract_wf int_seg_wf append_wf itermSubtract_wf int_term_value_subtract_lemma istype-le int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma select_append_front subtype_rel_self iff_weakening_equal intformeq_wf int_formula_prop_eq_lemma select_append lt_int_wf eqtt_to_assert assert_of_lt_int non_neg_length length_append eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf set_subtype_base lelt_wf int_subtype_base decidable__equal_int select-as-hd add-associates minus-one-mul add-swap add-mul-special zero-add zero-mul add-member-int_seg2 add-commutes select_wf select_append_back squash_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType hypothesis functionIsType because_Cache universeEquality instantiate productElimination independent_pairFormation Error :memTop,  dependent_functionElimination natural_numberEquality addEquality unionElimination imageElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality voidElimination dependent_set_memberEquality_alt promote_hyp hypothesis_subsumption setElimination rename productIsType equalityTransitivity equalitySymmetry equalityElimination equalityIstype cumulativity intEquality multiplyEquality hyp_replacement closedConclusion minusEquality productEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L1,L2:T  List.  \mforall{}x,y,z:T.
        (rel-path-between(T;R;x;y;L1)
        {}\mRightarrow{}  rel-path-between(T;R;y;z;L2)
        {}\mRightarrow{}  Refl(T;v1,v2.R  v1  v2)
        {}\mRightarrow{}  rel-path-between(T;R;x;z;L1  @  L2))



Date html generated: 2020_05_19-PM-09_52_53
Last ObjectModification: 2020_02_06-PM-09_36_48

Theory : relations2


Home Index