Nuprl Lemma : not-ni-eventually-equal-inf

[x:ℕ∞]. ni-eventually-equal(x;0∞⇐⇒ = ∞ ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-eventually-equal: ni-eventually-equal(f;g) nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rev_implies:  Q nat-inf: ℕ∞ so_lambda: λ2x.t[x] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] nat-inf-infinity: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b ni-eventually-equal: ni-eventually-equal(f;g) subtype_rel: A ⊆B nat2inf: n∞ int_upper: {i...} subtract: m
Lemmas referenced :  not_wf ni-eventually-equal_wf nat2inf_wf false_wf le_wf equal-wf-T-base nat-inf_wf nat_wf all_wf assert_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf bool_wf eqtt_to_assert btrue_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_upper_wf int_upper_subtype_nat lt_int_wf assert_of_lt_int int_upper_properties intformless_wf int_formula_prop_less_lemma less_than_wf bfalse_wf ge_wf add-zero subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-associates subtract-add-cancel assert_elim minus-one-mul add-commutes add-mul-special zero-mul zero-add not_assert_elim int_subtype_base btrue_neq_bfalse equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_functionElimination voidElimination because_Cache baseClosed productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality setElimination rename functionExtensionality functionEquality applyEquality addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity intWeakElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  (\mneg{}ni-eventually-equal(x;0\minfty{})  \mLeftarrow{}{}\mRightarrow{}  x  =  \minfty{})



Date html generated: 2017_10_01-AM-08_30_20
Last ObjectModification: 2017_07_26-PM-04_24_31

Theory : basic


Home Index