Nuprl Lemma : not-ni-eventually-equal-inf
∀[x:ℕ∞]. (¬ni-eventually-equal(x;0∞) 
⇐⇒ x = ∞ ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-eventually-equal: ni-eventually-equal(f;g)
, 
nat-inf-infinity: ∞
, 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
nat-inf: ℕ∞
, 
so_lambda: λ2x.t[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
nat-inf-infinity: ∞
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
ni-eventually-equal: ni-eventually-equal(f;g)
, 
subtype_rel: A ⊆r B
, 
nat2inf: n∞
, 
int_upper: {i...}
, 
subtract: n - m
Lemmas referenced : 
not_wf, 
ni-eventually-equal_wf, 
nat2inf_wf, 
false_wf, 
le_wf, 
equal-wf-T-base, 
nat-inf_wf, 
nat_wf, 
all_wf, 
assert_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
bool_wf, 
eqtt_to_assert, 
btrue_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_upper_wf, 
int_upper_subtype_nat, 
lt_int_wf, 
assert_of_lt_int, 
int_upper_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
bfalse_wf, 
ge_wf, 
add-zero, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-associates, 
subtract-add-cancel, 
assert_elim, 
minus-one-mul, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add, 
not_assert_elim, 
int_subtype_base, 
btrue_neq_bfalse, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
baseClosed, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
setElimination, 
rename, 
functionExtensionality, 
functionEquality, 
applyEquality, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
intWeakElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  (\mneg{}ni-eventually-equal(x;0\minfty{})  \mLeftarrow{}{}\mRightarrow{}  x  =  \minfty{})
Date html generated:
2017_10_01-AM-08_30_20
Last ObjectModification:
2017_07_26-PM-04_24_31
Theory : basic
Home
Index