Nuprl Lemma : first-iseg

[T:Type]. ∀[P:(T List) ⟶ ℙ].
  ((∀L:T List. Dec(P[L]))
   (∀L:T List
        (P[L]  (∃L':T List. (L' ≤ L ∧ P[L'] ∧ (∀L'':T List. (L'' ≤ L'  P[L'']  (L'' L' ∈ (T List)))))))))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  less_than: a < b squash: T so_apply: x[s] so_lambda: λ2x.t[x] assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B true: True uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q cons: [a b] bfalse: ff
Lemmas referenced :  int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf length_wf non_neg_length nat_properties decidable__lt lelt_wf less_than_wf decidable__assert null_wf3 subtype_rel_list top_wf list_wf all_wf exists_wf iseg_wf equal_wf set_wf primrec-wf2 nat_wf itermAdd_wf int_term_value_add_lemma length_wf_nat decidable_wf list-cases null_nil_lemma length_of_nil_lemma nil_wf equal-wf-T-base assert_of_null assert_wf true_wf iseg_nil product_subtype_list null_cons_lemma length_of_cons_lemma last_lemma decidable-exists-iseg iseg_length squash_wf length_append cons_wf last_wf iff_weakening_equal iseg_transitivity iseg_append0 iseg_weakening iseg_append_iff append_wf cons_iseg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addLevel applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality cumulativity imageElimination independent_functionElimination functionExtensionality functionEquality universeEquality productEquality addEquality baseClosed allFunctionality impliesFunctionality promote_hyp imageMemberEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))
    {}\mRightarrow{}  (\mforall{}L:T  List
                (P[L]
                {}\mRightarrow{}  (\mexists{}L':T  List.  (L'  \mleq{}  L  \mwedge{}  P[L']  \mwedge{}  (\mforall{}L'':T  List.  (L''  \mleq{}  L'  {}\mRightarrow{}  P[L'']  {}\mRightarrow{}  (L''  =  L'))))))))



Date html generated: 2018_05_21-PM-07_21_46
Last ObjectModification: 2017_07_26-PM-05_05_22

Theory : general


Home Index