Nuprl Lemma : filter_interleaving_occurence
∀[T:Type]
  ∀P:T ⟶ 𝔹. ∀L:T List.
    ∃f1:ℕ||filter(λx.(¬b(P x));L)|| ⟶ ℕ||L||
     ∃f2:ℕ||filter(P;L)|| ⟶ ℕ||L||
      (interleaving_occurence(T;filter(λx.(¬b(P x));L);filter(P;L);L;f1;f2)
      ∧ ((∀i:ℕ||L||. ∃k:ℕ||filter(P;L)||. ((i = (f2 k) ∈ ℤ) ∧ (L[i] = filter(P;L)[k] ∈ T)) supposing ↑(P L[i]))
        ∧ (∀i:ℕ||L||
             ∃k:ℕ||filter(λx.(¬b(P x));L)||. ((i = (f1 k) ∈ ℤ) ∧ (L[i] = filter(λx.(¬b(P x));L)[k] ∈ T)) 
             supposing ¬↑(P L[i])))
      ∧ (∀i:ℕ||filter(λx.(¬b(P x));L)||. (¬↑(P L[f1 i])))
      ∧ (∀i:ℕ||filter(P;L)||. (↑(P L[f2 i]))))
Proof
Definitions occuring in Statement : 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
select: L[n]
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
int_seg: {i..j-}
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
top: Top
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
istype: istype(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
less_than': less_than'(a;b)
, 
l_member: (x ∈ l)
, 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
Lemmas referenced : 
bool_wf, 
list_wf, 
filter_is_interleaving, 
set_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
l_member_wf, 
bnot_wf, 
filter_wf5, 
interleaving_implies_occurence, 
equal_wf, 
exists_wf, 
isect_wf, 
all_wf, 
interleaving_occurence_wf, 
nat_properties, 
length_wf_nat, 
lelt_wf, 
non_neg_length, 
not_wf, 
int_seg_wf, 
assert_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
int_seg_properties, 
select_wf, 
assert_witness, 
interleaving_occurence_onto, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
iff_weakening_equal, 
less_than_wf, 
le_wf, 
true_wf, 
squash_wf, 
false_wf, 
int_seg_subtype_nat, 
member_filter, 
assert_of_bnot, 
int_subtype_base, 
subtype_base_sq, 
btrue_neq_bfalse, 
and_wf, 
bfalse_wf, 
assert_elim
Rules used in proof : 
universeEquality, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
setEquality, 
rename, 
setElimination, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
productEquality, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
imageElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
unionElimination, 
natural_numberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
lambdaFormation_alt, 
universeIsType, 
setIsType, 
lambdaEquality_alt, 
baseClosed, 
imageMemberEquality, 
instantiate, 
levelHypothesis, 
addLevel
Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.
        \mexists{}f1:\mBbbN{}||filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)||  {}\mrightarrow{}  \mBbbN{}||L||
          \mexists{}f2:\mBbbN{}||filter(P;L)||  {}\mrightarrow{}  \mBbbN{}||L||
            (interleaving\_occurence(T;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L);filter(P;L);L;f1;f2)
            \mwedge{}  ((\mforall{}i:\mBbbN{}||L||
                        \mexists{}k:\mBbbN{}||filter(P;L)||.  ((i  =  (f2  k))  \mwedge{}  (L[i]  =  filter(P;L)[k]))  supposing  \muparrow{}(P  L[i]))
                \mwedge{}  (\mforall{}i:\mBbbN{}||L||
                          \mexists{}k:\mBbbN{}||filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)||.  ((i  =  (f1  k))  \mwedge{}  (L[i]  =  filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)[k])) 
                          supposing  \mneg{}\muparrow{}(P  L[i])))
            \mwedge{}  (\mforall{}i:\mBbbN{}||filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)||.  (\mneg{}\muparrow{}(P  L[f1  i])))
            \mwedge{}  (\mforall{}i:\mBbbN{}||filter(P;L)||.  (\muparrow{}(P  L[f2  i]))))
Date html generated:
2020_05_20-AM-07_48_54
Last ObjectModification:
2020_01_25-AM-09_00_33
Theory : list!
Home
Index