Nuprl Lemma : Paasche-theorem2

[x,y:Atom].  ∀[k:ℕ]. (Moessner(ℤ-rng;x;y;1;λi.i;k)[bag-rep((k (1 k)) ÷ 2;x)] (k)!! ∈ ℤsupposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-one: 1 fps-coeff: f[b] bag-rep: bag-rep(n;x) super-fact: (n)!! nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A lambda: λx.A[x] divide: n ÷ m multiply: m add: m natural_number: $n int: atom: Atom equal: t ∈ T int_ring: -rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: squash: T true: True subtype_rel: A ⊆B integ_dom: IntegDom{i} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  int_ring: -rng rng_car: |r| pi1: fst(t) crng: CRng rng: Rng so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] lelt: i ≤ j < k subtract: m
Lemmas referenced :  KozenSilva-corollary2 nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf nat_wf equal_wf squash_wf true_wf not_wf equal-wf-base atom_subtype_base fps-coeff_wf bag_wf power-series_wf crng_wf int_ring_wf Moessner_wf fps-one_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract-add-cancel bag-rep_wf rng_car_wf integ_dom_wf int_subtype_base non_neg_sum int_seg_wf int_seg_properties sum_wf one-mul add-commutes mul-distributes mul-commutes subtract_wf mul-swap mul-associates add-associates minus-one-mul-top two-mul add-swap mul-distributes-right sum_arith super-fact-int-prod-exp
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity universeEquality imageMemberEquality baseClosed because_Cache axiomEquality atomEquality functionExtensionality lambdaFormation equalityElimination productElimination promote_hyp instantiate cumulativity independent_functionElimination functionEquality multiplyEquality minusEquality divideEquality addLevel

Latex:
\mforall{}[x,y:Atom].
    \mforall{}[k:\mBbbN{}].  (Moessner(\mBbbZ{}-rng;x;y;1;\mlambda{}i.i;k)[bag-rep((k  *  (1  +  k))  \mdiv{}  2;x)]  =  (k)!!)  supposing  \mneg{}(x  =  y)



Date html generated: 2018_05_21-PM-10_15_40
Last ObjectModification: 2017_07_26-PM-06_35_47

Theory : power!series


Home Index