Nuprl Lemma : KozenSilva-corollary2

[x,y:Atom].
  ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].
    (Moessner(ℤ-rng;x;y;1;λi.if (i =z 0) then else (i 1) fi ;k)[bag-rep(Σ(d i < k);x)]
    = Π((k i)^(d i) i < k)
    ∈ ℤ
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-one: 1 fps-coeff: f[b] bag-rep: bag-rep(n;x) exp: i^n int-prod: Π(f[x] x < k) sum: Σ(f[x] x < k) nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n int: atom: Atom equal: t ∈ T int_ring: -rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} so_apply: x[s] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q int-prod: Π(f[x] x < k) int_ring: -rng pi2: snd(t) pi1: fst(t) rng_one: 1 btrue: tt empty-bag: {} sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) primrec: primrec(n;b;c) bag-rep: bag-rep(n;x) null: null(as) bag-null: bag-null(bs) fps-one: 1 it: nil: [] bfalse: ff lt_int: i <j ifthenelse: if then else fi  from-upto: [n, m) upto: upto(n) list_accum: list_accum bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-summation: Σ(x∈b). f[x] bag-product: Πx ∈ b. f[x] fps-product: Π(x∈b).f[x] fps-coeff: f[b] integ_dom: IntegDom{i} nat_plus: + rng_car: |r| crng: CRng rng: Rng istype: istype(T) subtract: m uiff: uiff(P;Q) sq_type: SQType(T) rng_times: * bool: 𝔹 unit: Unit bnot: ¬bb assert: b rng_zero: 0 nequal: a ≠ b ∈ 
Lemmas referenced :  KozenSilva-corollary1 nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 equal_wf squash_wf true_wf istype-universe int-prod_wf exp_wf2 int_seg_subtype_nat istype-false subtract_wf int_seg_wf subtype_rel_self iff_weakening_equal fps-coeff_wf bag-rep_wf sum_wf non_neg_sum int_seg_properties decidable__le istype-le intformnot_wf int_formula_prop_not_lemma list-subtype-bag istype-nat atom_subtype_base istype-atom nat_wf le_wf false_wf itermAdd_wf int_term_value_add_lemma power-series_wf int_ring_wf fps-product-upto atom-valueall-type atom-deq_wf less_than_wf fps-exp_wf fps-add_wf fps-scalar-mul_wf rng_car_wf fps-atom_wf upto_wf fps-mul_wf fps-product_wf minus-zero add-zero minus-add add-associates minus-one-mul add-swap add-commutes int_seg_subtype not-le-2 condition-implies-le minus-one-mul-top add-mul-special zero-mul le-add-cancel2 itermSubtract_wf int_term_value_subtract_lemma sum_split decidable__lt subtype_base_sq int_subtype_base sum1 int-prod-split decidable__equal_int intformeq_wf int_formula_prop_eq_lemma primrec1_lemma one-mul fps-mul-coeff-bag-rep-simple set_subtype_base lelt_wf fps-exp-linear-coeff ite_rw_false eq_int_wf rng_nexp_wf rng_zero_wf iff_weakening_uiff assert_wf equal-wf-base assert_of_eq_int bag_qinc eqtt_to_assert rng_nexp-int eqff_to_assert assert_elim bnot_wf bool_wf eq_int_eq_true bfalse_wf bool_subtype_base btrue_neq_bfalse bool_cases_sqequal assert-bnot neg_assert_of_eq_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType applyEquality imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality intEquality because_Cache imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality closedConclusion dependent_set_memberEquality_alt unionElimination functionIsType isectIsTypeImplies equalityIsType4 baseApply functionEquality functionExtensionality lambdaEquality dependent_set_memberEquality lambdaFormation addEquality atomEquality equalityIsType1 multiplyEquality minusEquality productIsType cumulativity equalityIsType3 equalityElimination equalityIsType2 promote_hyp

Latex:
\mforall{}[x,y:Atom].
    \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
        (Moessner(\mBbbZ{}-rng;x;y;1;\mlambda{}i.if  (i  =\msubz{}  0)  then  0  else  d  (i  -  1)  fi  ;k)[bag-rep(\mSigma{}(d  i  |  i  <  k);x)]
        =  \mPi{}((k  -  i)\^{}(d  i)  |  i  <  k)) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2019_10_16-AM-11_36_59
Last ObjectModification: 2018_10_18-PM-11_53_18

Theory : power!series


Home Index