Nuprl Lemma : fps-product-upto
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[k:ℕ+]. ∀[f:ℕk ⟶ PowerSeries(X;r)].
    (Π(x∈upto(k)).f[x] = (f[0]*Π(x∈upto(k - 1)).f[x + 1]) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-product: Π(x∈b).f[x]
, 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
upto: upto(n)
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
single-bag: {x}
, 
bag-append: as + bs
, 
upto: upto(n)
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
from-upto: [n, m)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
bag-map: bag-map(f;bs)
Lemmas referenced : 
int_seg_wf, 
power-series_wf, 
nat_plus_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
from-upto_wf, 
list-subtype-bag, 
subtype_rel_sets, 
le_wf, 
lelt_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
single-bag_wf, 
decidable__lt, 
upto_wf, 
subtract_wf, 
subtype_rel_self, 
bag-append_wf, 
fps-product-append, 
squash_wf, 
true_wf, 
fps-mul_wf, 
fps-product_wf, 
add-member-int_seg2, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
iff_weakening_equal, 
fps-product-single, 
fps-product-reindex, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
from-upto-shift, 
list_wf, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
cumulativity, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
callbyvalueReduce, 
sqleReflexivity, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
productEquality, 
addEquality, 
minusEquality, 
dependent_set_memberEquality, 
imageElimination, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
setEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  PowerSeries(X;r)].
        (\mPi{}(x\mmember{}upto(k)).f[x]  =  (f[0]*\mPi{}(x\mmember{}upto(k  -  1)).f[x  +  1])) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_57_22
Last ObjectModification:
2017_07_26-PM-06_33_19
Theory : power!series
Home
Index