Nuprl Lemma : fps-product-upto

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[k:ℕ+]. ∀[f:ℕk ⟶ PowerSeries(X;r)].
    (x∈upto(k)).f[x] (f[0]*Π(x∈upto(k 1)).f[x 1]) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-product: Π(x∈b).f[x] fps-mul: (f*g) power-series: PowerSeries(X;r) upto: upto(n) deq: EqDecider(T) int_seg: {i..j-} nat_plus: + valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + single-bag: {x} bag-append: as bs upto: upto(n) append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] from-upto: [n, m) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) cand: c∧ B subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True squash: T less_than: a < b bag-map: bag-map(f;bs)
Lemmas referenced :  int_seg_wf power-series_wf nat_plus_wf crng_wf deq_wf valueall-type_wf list_ind_cons_lemma list_ind_nil_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf from-upto_wf list-subtype-bag subtype_rel_sets le_wf lelt_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel single-bag_wf decidable__lt upto_wf subtract_wf subtype_rel_self bag-append_wf fps-product-append squash_wf true_wf fps-mul_wf fps-product_wf add-member-int_seg2 intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma iff_weakening_equal fps-product-single fps-product-reindex int_seg_properties decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma subtype_rel_dep_function int_seg_subtype from-upto-shift list_wf list_subtype_base set_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality cumulativity sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination voidElimination voidEquality callbyvalueReduce sqleReflexivity lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate independent_functionElimination lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll applyEquality productEquality addEquality minusEquality dependent_set_memberEquality imageElimination functionExtensionality imageMemberEquality baseClosed setEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  PowerSeries(X;r)].
        (\mPi{}(x\mmember{}upto(k)).f[x]  =  (f[0]*\mPi{}(x\mmember{}upto(k  -  1)).f[x  +  1])) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_22
Last ObjectModification: 2017_07_26-PM-06_33_19

Theory : power!series


Home Index