Nuprl Lemma : no-retraction-case-1
∀[k:ℕ]. ∀[K:1-dim-complex].  (0 < ||K|| ⇒ (¬retraction(|K|;rn-prod-metric(k);|∂(K)|)))
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|, 
rn-prod-metric: rn-prod-metric(n), 
retraction: retraction(X;d;A), 
length: ||as||, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
natural_number: $n, 
rat-complex-boundary: ∂(K), 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
rat-cube-dimension: dim(c), 
sq_stable: SqStable(P), 
compose: f o g, 
isl: isl(x), 
map: map(f;as), 
concat: concat(ll), 
remove-repeats: remove-repeats(eq;L), 
face-complex: face-complex(k;L), 
list_ind: list_ind, 
reduce: reduce(f;k;as), 
filter: filter(P;l), 
rat-complex-boundary: ∂(K), 
rat-cube-sub-complex: rat-cube-sub-complex(P;L), 
req: x = y, 
meq: x ≡ y, 
label: ...$L... t, 
cons: [a / b], 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
nil: [], 
select: L[n], 
l_exists: (∃x∈L. P[x]), 
stable: Stable{P}, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
in-rat-cube: in-rat-cube(k;p;c), 
rccint: [l, u], 
i-member: r ∈ I, 
stable-union: Error :stable-union, 
rev_implies: P ⇐ Q, 
true: True, 
l_member: (x ∈ l), 
is-mfun: f:FUN(X;Y), 
req-vec: req-vec(n;x;y), 
iff: P ⇐⇒ Q, 
pi2: snd(t), 
l_all: (∀x∈L.P[x]), 
no_repeats: no_repeats(T;l), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uiff: uiff(P;Q), 
guard: {T}, 
cand: A c∧ B, 
pi1: fst(t), 
rational-interval: ℚInterval, 
rational-cube: ℚCube(k), 
squash: ↓T, 
less_than: a < b, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
real-vec: ℝ^n, 
rat-cube-complex-polyhedron: |K|, 
prop: ℙ, 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rational-cube-complex: n-dim-complex, 
exists: ∃x:A. B[x], 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
retraction: retraction(X;d;A), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rat-cube-complex-polyhedron-closed, 
bool_cases, 
inhabited-rat-cube_wf, 
sq_stable__assert, 
inhabited-iff-in-rat-cube, 
member_filter_2, 
intersecting-0-dim-cubes, 
in-rat-cube_functionality, 
subtype_rel_transitivity, 
stable__meq, 
compose_wf, 
meq-same, 
meq-in-0-dim-cube, 
l_exists_iff, 
0-dim-complex-polyhedron-decidable, 
rat-cube-complex-polyhedron-subtype, 
filter-contains, 
non_neg_length, 
btrue_neq_bfalse, 
btrue_wf, 
null_nil_lemma, 
nil_wf, 
member-implies-null-eq-bfalse, 
assert-rceq, 
member_wf, 
filter_wf5, 
istype-assert, 
assert_of_bnot, 
assert_wf, 
Error :filter-length-less, 
rceq_wf, 
bnot_wf, 
rat-cube-sub-complex_wf, 
rat-complex-boundary-remove1, 
real-vec-sep_functionality, 
not-real-vec-sep-refl, 
meq_transitivity, 
meq_inversion, 
in-rat-cube-face, 
req-vec_weakening, 
in-0-dim-cube, 
real-vec-sep-symmetry, 
real-vec-sep_wf, 
rat-cube-face_wf, 
1-dim-cube-endpoints, 
l_all_iff, 
member-rat-complex-boundary, 
int_term_value_subtract_lemma, 
subtract_wf, 
cons_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-is-int-iff, 
nat_plus_properties, 
length_wf_nat, 
add_nat_plus, 
length_of_cons_lemma, 
product_subtype_list, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
list-cases, 
rat-cube-complex-polyhedron-inhabited, 
is-mfun_wf, 
l_exists_wf, 
subtract-1-ge-0, 
ge_wf, 
rleq_antisymmetry, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
not_wf, 
false_wf, 
stable__from_decidable, 
qle_weakening_lt_qorder, 
rleq-rat2real, 
req_weakening, 
extensional-discrete-real-fun-is-constant, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
int-to-real_wf, 
real_polynomial_null, 
req-iff-rsub-is-0, 
itermSubtract_wf, 
rccint_wf, 
i-member_wf, 
rleq_wf, 
rleq_weakening, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
subtype_base_sq, 
assert_of_eq_int, 
eqtt_to_assert, 
in-rat-cube_wf, 
real_wf, 
eq_int_wf, 
ifthenelse_wf, 
rat-cube-dimension-one, 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
l_member_wf, 
req-rat2real, 
req_wf, 
rat-cube-dimension-zero, 
equal_wf, 
rat-cube-dimension_wf, 
equal-wf-base, 
iff_weakening_uiff, 
rationals_wf, 
req-vec_transitivity, 
req-vec_inversion, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
istype-false, 
int_seg_subtype_nat, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
decidable__equal_int, 
meq-rn-prod-metric, 
real-vec_wf, 
metric-on-subtype, 
meq_wf, 
rational-interval_wf, 
int_seg_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
decidable__le, 
int_seg_properties, 
select_wf, 
rat2real_wf, 
req-vec_wf, 
istype-nat, 
rational-cube_wf, 
length_wf, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
boundary-polyhedron-subtype, 
rn-prod-metric_wf, 
rat-cube-complex-polyhedron_wf, 
retraction_wf, 
rational-cube-complex_wf, 
subtype_rel_self, 
istype-le, 
istype-void, 
rat-complex-boundary_wf, 
0-dim-complex-polyhedron
Rules used in proof : 
productEquality, 
inlFormation_alt, 
inrFormation_alt, 
hyp_replacement, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
hypothesis_subsumption, 
intWeakElimination, 
unionIsType, 
unionEquality, 
setIsType, 
cumulativity, 
equalityElimination, 
imageMemberEquality, 
universeEquality, 
instantiate, 
productIsType, 
independent_pairEquality, 
baseClosed, 
addEquality, 
minusEquality, 
applyLambdaEquality, 
sqequalBase, 
intEquality, 
functionExtensionality, 
equalityIstype, 
functionEquality, 
int_eqEquality, 
imageElimination, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
independent_isectElimination, 
universeIsType, 
independent_functionElimination, 
because_Cache, 
promote_hyp, 
applyEquality, 
hypothesis, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
productElimination, 
rename, 
setElimination, 
sqequalHypSubstitution, 
thin, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:1-dim-complex].    (0  <  ||K||  {}\mRightarrow{}  (\mneg{}retraction(|K|;rn-prod-metric(k);|\mpartial{}(K)|)))
Date html generated:
2019_10_30-AM-10_13_59
Last ObjectModification:
2019_10_29-PM-04_33_11
Theory : real!vectors
Home
Index