Nuprl Lemma : no-retraction-case-1

[k:ℕ]. ∀[K:1-dim-complex].  (0 < ||K||  retraction(|K|;rn-prod-metric(k);|∂(K)|)))


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) retraction: retraction(X;d;A) length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] not: ¬A implies:  Q natural_number: $n rat-complex-boundary: (K) rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rat-cube-dimension: dim(c) sq_stable: SqStable(P) compose: g isl: isl(x) map: map(f;as) concat: concat(ll) remove-repeats: remove-repeats(eq;L) face-complex: face-complex(k;L) list_ind: list_ind reduce: reduce(f;k;as) filter: filter(P;l) rat-complex-boundary: (K) rat-cube-sub-complex: rat-cube-sub-complex(P;L) req: y meq: x ≡ y label: ...$L... t cons: [a b] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] nil: [] select: L[n] l_exists: (∃x∈L. P[x]) stable: Stable{P} rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 in-rat-cube: in-rat-cube(k;p;c) rccint: [l, u] i-member: r ∈ I stable-union: Error :stable-union,  rev_implies:  Q true: True l_member: (x ∈ l) is-mfun: f:FUN(X;Y) req-vec: req-vec(n;x;y) iff: ⇐⇒ Q pi2: snd(t) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) so_apply: x[s] so_lambda: λ2x.t[x] uiff: uiff(P;Q) guard: {T} cand: c∧ B pi1: fst(t) rational-interval: Interval rational-cube: Cube(k) squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n rat-cube-complex-polyhedron: |K| prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat_plus: + uimplies: supposing a rational-cube-complex: n-dim-complex exists: x:A. B[x] subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) le: A ≤ B nat: all: x:A. B[x] and: P ∧ Q retraction: retraction(X;d;A) false: False not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rat-cube-complex-polyhedron-closed bool_cases inhabited-rat-cube_wf sq_stable__assert inhabited-iff-in-rat-cube member_filter_2 intersecting-0-dim-cubes in-rat-cube_functionality subtype_rel_transitivity stable__meq compose_wf meq-same meq-in-0-dim-cube l_exists_iff 0-dim-complex-polyhedron-decidable rat-cube-complex-polyhedron-subtype filter-contains non_neg_length btrue_neq_bfalse btrue_wf null_nil_lemma nil_wf member-implies-null-eq-bfalse assert-rceq member_wf filter_wf5 istype-assert assert_of_bnot assert_wf Error :filter-length-less,  rceq_wf bnot_wf rat-cube-sub-complex_wf rat-complex-boundary-remove1 real-vec-sep_functionality not-real-vec-sep-refl meq_transitivity meq_inversion in-rat-cube-face req-vec_weakening in-0-dim-cube real-vec-sep-symmetry real-vec-sep_wf rat-cube-face_wf 1-dim-cube-endpoints l_all_iff member-rat-complex-boundary int_term_value_subtract_lemma subtract_wf cons_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff nat_plus_properties length_wf_nat add_nat_plus length_of_cons_lemma product_subtype_list istype-base stuck-spread length_of_nil_lemma list-cases rat-cube-complex-polyhedron-inhabited is-mfun_wf l_exists_wf subtract-1-ge-0 ge_wf rleq_antisymmetry minimal-not-not-excluded-middle minimal-double-negation-hyp-elim not_wf false_wf stable__from_decidable qle_weakening_lt_qorder rleq-rat2real req_weakening extensional-discrete-real-fun-is-constant real_term_value_const_lemma real_term_value_var_lemma real_term_value_sub_lemma int-to-real_wf real_polynomial_null req-iff-rsub-is-0 itermSubtract_wf rccint_wf i-member_wf rleq_wf rleq_weakening neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert subtype_base_sq assert_of_eq_int eqtt_to_assert in-rat-cube_wf real_wf eq_int_wf ifthenelse_wf rat-cube-dimension-one iff_weakening_equal istype-universe true_wf squash_wf l_member_wf req-rat2real req_wf rat-cube-dimension-zero equal_wf rat-cube-dimension_wf equal-wf-base iff_weakening_uiff rationals_wf req-vec_transitivity req-vec_inversion int_formula_prop_eq_lemma intformeq_wf istype-false int_seg_subtype_nat int_subtype_base lelt_wf set_subtype_base decidable__equal_int meq-rn-prod-metric real-vec_wf metric-on-subtype meq_wf rational-interval_wf int_seg_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformand_wf decidable__le int_seg_properties select_wf rat2real_wf req-vec_wf istype-nat rational-cube_wf length_wf istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt nat_properties boundary-polyhedron-subtype rn-prod-metric_wf rat-cube-complex-polyhedron_wf retraction_wf rational-cube-complex_wf subtype_rel_self istype-le istype-void rat-complex-boundary_wf 0-dim-complex-polyhedron
Rules used in proof :  productEquality inlFormation_alt inrFormation_alt hyp_replacement closedConclusion baseApply pointwiseFunctionality hypothesis_subsumption intWeakElimination unionIsType unionEquality setIsType cumulativity equalityElimination imageMemberEquality universeEquality instantiate productIsType independent_pairEquality baseClosed addEquality minusEquality applyLambdaEquality sqequalBase intEquality functionExtensionality equalityIstype functionEquality int_eqEquality imageElimination functionIsType equalitySymmetry equalityTransitivity isectIsTypeImplies inhabitedIsType functionIsTypeImplies isect_memberEquality_alt lambdaEquality_alt dependent_pairFormation_alt approximateComputation unionElimination independent_isectElimination universeIsType independent_functionElimination because_Cache promote_hyp applyEquality hypothesis voidElimination sqequalRule independent_pairFormation natural_numberEquality dependent_set_memberEquality_alt isectElimination hypothesisEquality dependent_functionElimination extract_by_obid productElimination rename setElimination sqequalHypSubstitution thin lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:1-dim-complex].    (0  <  ||K||  {}\mRightarrow{}  (\mneg{}retraction(|K|;rn-prod-metric(k);|\mpartial{}(K)|)))



Date html generated: 2019_10_30-AM-10_13_59
Last ObjectModification: 2019_10_29-PM-04_33_11

Theory : real!vectors


Home Index