Nuprl Lemma : hd-es-le-before

es:EO. ∀e,fst:E.  ((↑first(fst))  fst ≤loc e   (hd(≤loc(e)) fst ∈ E))


Proof




Definitions occuring in Statement :  es-le-before: loc(e) es-le: e ≤loc e'  es-first: first(e) es-E: E event_ordering: EO hd: hd(l) assert: b all: x:A. B[x] implies:  Q equal: t ∈ T
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf es-le_wf assert_wf es-first_wf2 es-E_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf bool_wf eqtt_to_assert list_ind_nil_lemma reduce_hd_cons_lemma assert_elim and_wf equal_wf ifthenelse_wf es-le-first uiff_transitivity equal-wf-T-base bnot_wf not_wf eqff_to_assert assert_of_bnot decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul event_ordering_wf es-pred_wf es-pred-locl es-causl_weakening es-le-pred not_assert_elim btrue_neq_bfalse es-le-before_wf list_wf Id_wf es-loc_wf set_wf list-cases product_subtype_list null_cons_lemma bfalse_wf append_is_nil es-before_wf2 cons_wf null_wf3 subtype_rel_list top_wf null_nil_lemma btrue_wf equal-wf-base-T list_ind_cons_lemma
\mforall{}es:EO.  \mforall{}e,fst:E.    ((\muparrow{}first(fst))  {}\mRightarrow{}  fst  \mleq{}loc  e    {}\mRightarrow{}  (hd(\mleq{}loc(e))  =  fst))



Date html generated: 2015_07_17-AM-08_43_09
Last ObjectModification: 2015_01_27-PM-02_40_58

Home Index