Nuprl Lemma : rank-Ex1_wf

[T:Type]. ∀[t:RankEx1(T)].  (rank-Ex1(t) ∈ ℕ)


Proof




Definitions occuring in Statement :  rank-Ex1: rank-Ex1(t) RankEx1: RankEx1(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf RankEx1_size_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties RankEx1-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom not-le-2 subtract-is-less lelt_wf imax_wf zero-le-nat add-nat imax_ub sq_stable__le decidable__lt sum-nat length_wf_nat select_wf length_wf sum_wf sum-nat-less not-equal-2 le-add-cancel-alt add-mul-special zero-mul nat_wf RankEx1_wf imax-list-is-nat map-as-map-upto subtype_rel_list top_wf map_wf upto_wf
\mforall{}[T:Type].  \mforall{}[t:RankEx1(T)].    (rank-Ex1(t)  \mmember{}  \mBbbN{})



Date html generated: 2015_07_17-AM-07_48_45
Last ObjectModification: 2015_01_27-AM-09_39_31

Home Index