Nuprl Lemma : rank-Ex1_wf
∀[T:Type]. ∀[t:RankEx1(T)].  (rank-Ex1(t) ∈ ℕ)
Proof
Definitions occuring in Statement : 
rank-Ex1: rank-Ex1(t)
, 
RankEx1: RankEx1(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
le_wf, 
RankEx1_size_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
RankEx1-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
not-le-2, 
subtract-is-less, 
lelt_wf, 
imax_wf, 
zero-le-nat, 
add-nat, 
imax_ub, 
sq_stable__le, 
decidable__lt, 
sum-nat, 
length_wf_nat, 
select_wf, 
length_wf, 
sum_wf, 
sum-nat-less, 
not-equal-2, 
le-add-cancel-alt, 
add-mul-special, 
zero-mul, 
nat_wf, 
RankEx1_wf, 
imax-list-is-nat, 
map-as-map-upto, 
subtype_rel_list, 
top_wf, 
map_wf, 
upto_wf
\mforall{}[T:Type].  \mforall{}[t:RankEx1(T)].    (rank-Ex1(t)  \mmember{}  \mBbbN{})
Date html generated:
2015_07_17-AM-07_48_45
Last ObjectModification:
2015_01_27-AM-09_39_31
Home
Index