Nuprl Lemma : fset-ac-le-face-lattice0

[T:Type]. ∀[eq:EqDecider(T)]. ∀[i:T]. ∀[s:fset(fset(T T))].
  (fset-all(s;x.inl i ∈b x) ⇐⇒ fset-ac-le(union-deq(T;T;eq;eq);s;(i=0)))


Proof




Definitions occuring in Statement :  face-lattice0: (x=0) fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) deq-fset-member: a ∈b s fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) uall: [x:A]. B[x] iff: ⇐⇒ Q inl: inl x union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False fset-member: a ∈ s assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: bfalse: ff face-lattice0: (x=0) all: x:A. B[x] guard: {T} cand: c∧ B deq-fset-member: a ∈b s squash: T exists: x:A. B[x] sq_stable: SqStable(P) f-subset: xs ⊆ ys
Lemmas referenced :  fl-point-sq fset_wf assert_wf fset-antichain_wf union-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf face-lattice0_wf deq-fset-member_wf fset-ac-le_wf deq_wf fset-all-iff deq-fset_wf iff_weakening_uiff uall_wf isect_wf fset-member_wf assert_of_bnot assert-fset-null not_wf equal-wf-T-base fset-singleton_wf equal_wf member-fset-filter bool_wf all_wf iff_wf f-subset_wf member-fset-singleton assert-deq-f-subset f-singleton-subset fset-ac-le-implies2 sq_stable__assert assert-deq-fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaEquality setElimination rename hypothesisEquality setEquality unionEquality productEquality independent_pairFormation lambdaFormation cumulativity because_Cache applyEquality independent_functionElimination inlEquality universeEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry addLevel impliesFunctionality baseClosed hyp_replacement applyLambdaEquality dependent_functionElimination functionEquality imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[i:T].  \mforall{}[s:fset(fset(T  +  T))].
    (fset-all(s;x.inl  i  \mmember{}\msubb{}  x)  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(union-deq(T;T;eq;eq);s;(i=0)))



Date html generated: 2018_05_22-PM-09_55_06
Last ObjectModification: 2018_05_20-PM-10_12_47

Theory : lattices


Home Index