Nuprl Lemma : Cauchy-Schwarz1-strict

n:ℕ. ∀x,y:ℕ1 ⟶ ℝ.
  ((∃i,j:ℕ1. x[j] y[i] ≠ x[i] y[j])
   ((Σ{x[i] y[i] 0≤i≤n} * Σ{x[i] y[i] 0≤i≤n}) < {x[i] x[i] 0≤i≤n} * Σ{y[i] y[i] 0≤i≤n})))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rneq: x ≠ y rless: x < y rmul: b real: int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: nat: uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B pointwise-req: x[k] y[k] for k ∈ [n,m] rev_uimplies: rev_uimplies(P;Q) pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rless: x < y sq_exists: x:{A| B[x]} nat_plus: +
Lemmas referenced :  rmul_preserves_rless int-to-real_wf rless-int rless_functionality rmul_wf rsum_wf rmul_comm exists_wf int_seg_wf rneq_wf real_wf nat_wf rless_wf radd_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf le_wf rmul_functionality rsum_product radd_functionality req_transitivity req_inversion rsum_linearity2 rsum_functionality2 rsum_linearity1 rsub_wf rnexp_wf false_wf rsum_functionality req_functionality rnexp2 rsum-of-nonneg-positive-iff rsum_nonneg rnexp2-nonneg equal_wf rneq-iff-rabs rabs_wf rnexp-positive rabs-rnexp rabs-of-nonneg nat_plus_properties rless-implies-rless rsum_linearity-rsub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache isectElimination natural_numberEquality hypothesis independent_functionElimination productElimination sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed lambdaEquality applyEquality functionExtensionality independent_isectElimination addEquality setElimination rename functionEquality addLevel impliesFunctionality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality unionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    ((\mexists{}i,j:\mBbbN{}n  +  1.  x[j]  *  y[i]  \mneq{}  x[i]  *  y[j])
    {}\mRightarrow{}  ((\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\}  *  \mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\})  <  (\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n\}
          *  \mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n\})))



Date html generated: 2017_10_03-AM-09_04_12
Last ObjectModification: 2017_06_19-PM-02_08_02

Theory : reals


Home Index