Nuprl Lemma : const-fun-converges
∀I:Interval. ∀f:ℕ ⟶ ℝ.  (f[n]↓ as n→∞ 
⇒ λn.f[n]↓ for x ∈ I))
Proof
Definitions occuring in Statement : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
interval: Interval
, 
converges: x[n]↓ as n→∞
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
cauchy: cauchy(n.x[n])
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
int_upper: {i...}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rneq: x ≠ y
Lemmas referenced : 
interval_wf, 
converges_wf, 
icompact_wf, 
nat_plus_subtype_nat, 
rleq_wf, 
all_wf, 
set_wf, 
int_upper_wf, 
nat_plus_wf, 
rabs_wf, 
rless_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rsub_wf, 
less_than'_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
i-approx_wf, 
sq_stable__icompact, 
nat_plus_properties, 
nat_properties, 
le_wf, 
int_upper_properties, 
int_upper_subtype_nat, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
i-member_wf, 
real_wf, 
fun-converges-iff-cauchy, 
nat_wf, 
converges-iff-cauchy
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
setEquality, 
isectElimination, 
setElimination, 
rename, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqEquality, 
computeAll, 
independent_pairEquality, 
inrFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (f[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  {}\mRightarrow{}  \mlambda{}n.f[n]\mdownarrow{}  for  x  \mmember{}  I))
Date html generated:
2016_05_18-AM-09_54_25
Last ObjectModification:
2016_01_17-AM-02_53_29
Theory : reals
Home
Index