Nuprl Lemma : const-fun-converges

I:Interval. ∀f:ℕ ⟶ ℝ.  (f[n]↓ as n→∞  λn.f[n]↓ for x ∈ I))


Proof




Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) interval: Interval converges: x[n]↓ as n→∞ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ uall: [x:A]. B[x] prop: so_apply: x[s1;s2] rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I cauchy: cauchy(n.x[n]) sq_exists: x:{A| B[x]} exists: x:A. B[x] nat_plus: + nat: le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True guard: {T} int_upper: {i...} sq_stable: SqStable(P) squash: T ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) rleq: x ≤ y rnonneg: rnonneg(x) rneq: x ≠ y
Lemmas referenced :  interval_wf converges_wf icompact_wf nat_plus_subtype_nat rleq_wf all_wf set_wf int_upper_wf nat_plus_wf rabs_wf rless_wf int_formula_prop_less_lemma intformless_wf rless-int int-to-real_wf rdiv_wf rsub_wf less_than'_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le i-approx_wf sq_stable__icompact nat_plus_properties nat_properties le_wf int_upper_properties int_upper_subtype_nat less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 false_wf decidable__lt i-member_wf real_wf fun-converges-iff-cauchy nat_wf converges-iff-cauchy
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis productElimination independent_functionElimination setEquality isectElimination setElimination rename dependent_pairFormation dependent_set_memberEquality addEquality natural_numberEquality unionElimination independent_pairFormation voidElimination independent_isectElimination isect_memberEquality voidEquality intEquality because_Cache minusEquality introduction imageMemberEquality baseClosed imageElimination int_eqEquality computeAll independent_pairEquality inrFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (f[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  {}\mRightarrow{}  \mlambda{}n.f[n]\mdownarrow{}  for  x  \mmember{}  I))



Date html generated: 2016_05_18-AM-09_54_25
Last ObjectModification: 2016_01_17-AM-02_53_29

Theory : reals


Home Index