Nuprl Lemma : max-metric-mdist-from-zero
∀[c:{c:ℝ| r0 ≤ c} ]. ∀[n:ℕ]. ∀[x:ℝ^n].  uiff(mdist(max-metric(n);x;λi.r0) ≤ c;∀i:ℕn. (x i ∈ [-(c), c]))
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n), 
real-vec: ℝ^n, 
mdist: mdist(d;x;y), 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
max-metric: max-metric(n), 
mdist: mdist(d;x;y), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
sq_stable: SqStable(P), 
squash: ↓T, 
less_than': less_than'(a;b), 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
real-vec: ℝ^n, 
less_than: a < b, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
member_rccint_lemma, 
istype-void, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
primrec0_lemma, 
int_seg_properties, 
int_seg_wf, 
rleq_wf, 
int-to-real_wf, 
sq_stable__rleq, 
real-vec_wf, 
istype-le, 
subtract-1-ge-0, 
real-vec-subtype, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
rminus_wf, 
decidable__lt, 
rsub_wf, 
radd_wf, 
rabs-difference-bound-rleq, 
rabs_wf, 
primrec_wf, 
real_wf, 
rmax_wf, 
rmax_lb, 
istype-nat, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq-implies-rleq, 
itermMinus_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
itermAdd_wf, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isect_memberFormation_alt, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
universeIsType, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionIsType, 
dependent_set_memberEquality_alt, 
applyEquality, 
unionElimination, 
because_Cache, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
productIsType, 
functionEquality, 
productEquality, 
closedConclusion, 
setIsType, 
intEquality
Latex:
\mforall{}[c:\{c:\mBbbR{}|  r0  \mleq{}  c\}  ].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].
    uiff(mdist(max-metric(n);x;\mlambda{}i.r0)  \mleq{}  c;\mforall{}i:\mBbbN{}n.  (x  i  \mmember{}  [-(c),  c]))
 Date html generated: 
2019_10_30-AM-08_35_54
 Last ObjectModification: 
2019_10_02-AM-11_02_00
Theory : reals
Home
Index