Nuprl Lemma : mdist-max-metric-mul2
∀[n:ℕ]. ∀[p,q:ℝ^n]. ∀[c:ℝ].  (mdist(max-metric(n);c*p;c*q) = (|c| * mdist(max-metric(n);p;q)))
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n), 
real-vec-mul: a*X, 
real-vec: ℝ^n, 
mdist: mdist(d;x;y), 
rabs: |x|, 
req: x = y, 
rmul: a * b, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
max-metric: max-metric(n), 
mdist: mdist(d;x;y), 
real-vec-mul: a*X, 
member: t ∈ T, 
real-vec: ℝ^n, 
nat: ℕ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
req_int_terms: t1 ≡ t2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__req, 
primrec_wf, 
real_wf, 
int-to-real_wf, 
rmax_wf, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
int_seg_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
req_witness, 
primrec0_lemma, 
real-vec_wf, 
istype-le, 
subtract-1-ge-0, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-nat, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
lt_int_wf, 
real-vec-subtype, 
subtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
req_wf, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
primrec-unroll, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
zero-rleq-rabs, 
rmax_functionality, 
radd_wf, 
rminus_wf, 
itermAdd_wf, 
itermMinus_wf, 
req_weakening, 
req_functionality, 
rmul-rmax, 
req_inversion, 
rabs-rmul, 
rabs_functionality, 
real_term_value_add_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
universeIsType, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
intWeakElimination, 
lambdaFormation_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
dependent_set_memberEquality_alt, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
closedConclusion, 
productIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    (mdist(max-metric(n);c*p;c*q)  =  (|c|  *  mdist(max-metric(n);p;q)))
 Date html generated: 
2019_10_30-AM-08_39_38
 Last ObjectModification: 
2019_10_02-AM-11_04_29
Theory : reals
Home
Index