Nuprl Lemma : mdist-max-metric-mul2
∀[n:ℕ]. ∀[p,q:ℝ^n]. ∀[c:ℝ]. (mdist(max-metric(n);c*p;c*q) = (|c| * mdist(max-metric(n);p;q)))
Proof
Definitions occuring in Statement :
max-metric: max-metric(n)
,
real-vec-mul: a*X
,
real-vec: ℝ^n
,
mdist: mdist(d;x;y)
,
rabs: |x|
,
req: x = y
,
rmul: a * b
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
max-metric: max-metric(n)
,
mdist: mdist(d;x;y)
,
real-vec-mul: a*X
,
member: t ∈ T
,
real-vec: ℝ^n
,
nat: ℕ
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
squash: ↓T
,
uiff: uiff(P;Q)
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
req_int_terms: t1 ≡ t2
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
sq_stable__req,
primrec_wf,
real_wf,
int-to-real_wf,
rmax_wf,
rabs_wf,
rsub_wf,
rmul_wf,
int_seg_wf,
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
req_witness,
primrec0_lemma,
real-vec_wf,
istype-le,
subtract-1-ge-0,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
istype-nat,
itermSubtract_wf,
itermMultiply_wf,
req-iff-rsub-is-0,
lt_int_wf,
real-vec-subtype,
subtract_wf,
int_term_value_subtract_lemma,
decidable__lt,
req_wf,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_const_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
primrec-unroll,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
less_than_wf,
zero-rleq-rabs,
rmax_functionality,
radd_wf,
rminus_wf,
itermAdd_wf,
itermMinus_wf,
req_weakening,
req_functionality,
rmul-rmax,
req_inversion,
rabs-rmul,
rabs_functionality,
real_term_value_add_lemma,
real_term_value_minus_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
sqequalRule,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
natural_numberEquality,
lambdaEquality_alt,
applyEquality,
inhabitedIsType,
universeIsType,
setElimination,
rename,
because_Cache,
independent_functionElimination,
intWeakElimination,
lambdaFormation_alt,
independent_isectElimination,
approximateComputation,
dependent_pairFormation_alt,
int_eqEquality,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
functionIsTypeImplies,
dependent_set_memberEquality_alt,
unionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
productElimination,
closedConclusion,
productIsType,
equalityIstype,
equalityTransitivity,
equalitySymmetry,
equalityElimination,
promote_hyp,
instantiate,
cumulativity
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[p,q:\mBbbR{}\^{}n]. \mforall{}[c:\mBbbR{}]. (mdist(max-metric(n);c*p;c*q) = (|c| * mdist(max-metric(n);p;q)))
Date html generated:
2019_10_30-AM-08_39_38
Last ObjectModification:
2019_10_02-AM-11_04_29
Theory : reals
Home
Index