Nuprl Lemma : real-vec-extend_wf_interval

[I:Interval]. ∀[k:ℕ]. ∀[a:I^k]. ∀[z:{z:ℝz ∈ I} ].  (a++z ∈ I^k 1)


Proof




Definitions occuring in Statement :  interval-vec: I^n real-vec-extend: a++z i-member: r ∈ I interval: Interval real: nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interval-vec: I^n all: x:A. B[x] nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] prop: nat_plus: + le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True guard: {T} sq_type: SQType(T) squash: T sq_stable: SqStable(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] label: ...$L... t lelt: i ≤ j < k assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} real-vec-extend: a++z
Lemmas referenced :  int_seg_wf all_wf i-member_wf set_wf real_wf interval-vec_wf nat_wf interval_wf real-vec-extend_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf subtype_base_sq set_subtype_base le_wf int_subtype_base add-swap member_wf real-vec_wf add-subtract-cancel sq_stable__and equal_wf subtract_wf sq_stable__equal squash_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf iff_weakening_equal and_wf true_wf subtype_rel_self lelt_wf assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality lambdaFormation extract_by_obid isectElimination natural_numberEquality addEquality hypothesisEquality hypothesis because_Cache sqequalRule lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination voidEquality intEquality minusEquality instantiate cumulativity imageElimination applyLambdaEquality imageMemberEquality baseClosed approximateComputation dependent_pairFormation int_eqEquality hyp_replacement universeEquality promote_hyp equalityElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[k:\mBbbN{}].  \mforall{}[a:I\^{}k].  \mforall{}[z:\{z:\mBbbR{}|  z  \mmember{}  I\}  ].    (a++z  \mmember{}  I\^{}k  +  1)



Date html generated: 2019_10_30-AM-08_23_16
Last ObjectModification: 2018_08_23-PM-01_45_25

Theory : reals


Home Index