Nuprl Lemma : real-vec-extend_wf_interval
∀[I:Interval]. ∀[k:ℕ]. ∀[a:I^k]. ∀[z:{z:ℝ| z ∈ I} ].  (a++z ∈ I^k + 1)
Proof
Definitions occuring in Statement : 
interval-vec: I^n
, 
real-vec-extend: a++z
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
interval-vec: I^n
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
label: ...$L... t
, 
lelt: i ≤ j < k
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
real-vec-extend: a++z
Lemmas referenced : 
int_seg_wf, 
all_wf, 
i-member_wf, 
set_wf, 
real_wf, 
interval-vec_wf, 
nat_wf, 
interval_wf, 
real-vec-extend_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
add-swap, 
member_wf, 
real-vec_wf, 
add-subtract-cancel, 
sq_stable__and, 
equal_wf, 
subtract_wf, 
sq_stable__equal, 
squash_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
iff_weakening_equal, 
and_wf, 
true_wf, 
subtype_rel_self, 
lelt_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
voidEquality, 
intEquality, 
minusEquality, 
instantiate, 
cumulativity, 
imageElimination, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
hyp_replacement, 
universeEquality, 
promote_hyp, 
equalityElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[k:\mBbbN{}].  \mforall{}[a:I\^{}k].  \mforall{}[z:\{z:\mBbbR{}|  z  \mmember{}  I\}  ].    (a++z  \mmember{}  I\^{}k  +  1)
Date html generated:
2019_10_30-AM-08_23_16
Last ObjectModification:
2018_08_23-PM-01_45_25
Theory : reals
Home
Index