Nuprl Lemma : rcos-pi-over-4
rcos((π/r(4))) = (r1/rsqrt(r(2)))
Proof
Definitions occuring in Statement : 
pi: π, 
rcos: rcos(x), 
rsqrt: rsqrt(x), 
rdiv: (x/y), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
int-to-real: r(n), 
rsqrt: rsqrt(x), 
rroot: rroot(i;x), 
ifthenelse: if b then t else f fi , 
isEven: isEven(n), 
eq_int: (i =z j), 
modulus: a mod n, 
remainder: n rem m, 
btrue: tt, 
rroot-abs: rroot-abs(i;x), 
fastexp: i^n, 
efficient-exp-ext, 
genrec: genrec, 
subtract: n - m, 
rabs: |x|, 
absval: |i|, 
iroot: iroot(n;x), 
integer-nth-root-ext, 
exp: i^n, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
genrec-ap: genrec-ap, 
divide: n ÷ m, 
true: True, 
and: P ∧ Q, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
rneq: x ≠ y, 
guard: {T}, 
nat: ℕ, 
uiff: uiff(P;Q), 
rcos: rcos(x), 
approx-arg: approx-arg(f;B;x), 
accelerate: accelerate(k;f), 
rdiv: (x/y), 
rmul: a * b, 
pi: π, 
int-rmul: k1 * a, 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
lt_int: i <z j, 
imax: imax(a;b), 
halfpi: π/2, 
cubic_converge: cubic_converge(b;m), 
le_int: i ≤z j, 
bnot: ¬bb, 
bfalse: ff, 
fastpi: fastpi(n), 
reg-seq-inv: reg-seq-inv(x), 
reg-seq-mul: reg-seq-mul(x;y), 
cosine: cosine(x), 
pi1: fst(t), 
cosine-exists-ext, 
int-rdiv: (a)/k1, 
canonical-bound: canonical-bound(r), 
rsum: Σ{x[k] | n≤k≤m}, 
expfact: expfact(n;x;p;b), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
map: map(f;as), 
list_ind: list_ind, 
from-upto: [n, m), 
cons: [a / b], 
nil: [], 
it: ⋅, 
radd-list: radd-list(L), 
length: ||as||, 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
fact: (n)!, 
rnexp: x^k1, 
canon-bnd: canon-bnd(x), 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const", 
rtermSubtract: left "-" right, 
pi2: snd(t)
Lemmas referenced : 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
int-to-real_wf, 
rsqrt_wf, 
rleq-int, 
istype-false, 
rleq_wf, 
rsin-rcos-pythag, 
rdiv_wf, 
pi_wf, 
rless-int, 
rless_wf, 
radd_wf, 
rnexp_wf, 
nat_plus_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
rsin_wf, 
rcos_wf, 
req_functionality, 
radd_functionality, 
req_weakening, 
rnexp_functionality, 
rsin-pi-over-4, 
rsqrt-unique, 
rleq-int-fractions2, 
rleq_weakening_rless, 
rmul_wf, 
req_inversion, 
rnexp2, 
rsqrt-rnexp-2, 
rsqrt-positive-iff, 
rdiv_functionality, 
rnexp-one, 
rneq_functionality, 
rnexp-rdiv, 
req-implies-req, 
rsub_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
assert-rat-term-eq2, 
rtermSubtract_wf, 
rtermConstant_wf, 
rtermDivide_wf, 
rsqrt1, 
false_wf, 
less_than_wf, 
rsqrt-rdiv, 
efficient-exp-ext, 
integer-nth-root-ext, 
cosine-exists-ext
Rules used in proof : 
cut, 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
sqequalHypSubstitution, 
hypothesis, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
dependent_functionElimination, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
lambdaFormation_alt, 
because_Cache, 
closedConclusion, 
inrFormation_alt, 
int_eqEquality, 
multiplyEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
inrFormation
Latex:
rcos((\mpi{}/r(4)))  =  (r1/rsqrt(r(2)))
Date html generated:
2019_10_30-AM-11_44_11
Last ObjectModification:
2019_04_03-AM-00_21_28
Theory : reals_2
Home
Index