Nuprl Lemma : rcos-pi-over-4
rcos((π/r(4))) = (r1/rsqrt(r(2)))
Proof
Definitions occuring in Statement :
pi: π
,
rcos: rcos(x)
,
rsqrt: rsqrt(x)
,
rdiv: (x/y)
,
req: x = y
,
int-to-real: r(n)
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
int-to-real: r(n)
,
rsqrt: rsqrt(x)
,
rroot: rroot(i;x)
,
ifthenelse: if b then t else f fi
,
isEven: isEven(n)
,
eq_int: (i =z j)
,
modulus: a mod n
,
remainder: n rem m
,
btrue: tt
,
rroot-abs: rroot-abs(i;x)
,
fastexp: i^n
,
efficient-exp-ext,
genrec: genrec,
subtract: n - m
,
rabs: |x|
,
absval: |i|
,
iroot: iroot(n;x)
,
integer-nth-root-ext,
exp: i^n
,
primrec: primrec(n;b;c)
,
primtailrec: primtailrec(n;i;b;f)
,
genrec-ap: genrec-ap,
divide: n ÷ m
,
true: True
,
and: P ∧ Q
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
prop: ℙ
,
false: False
,
subtype_rel: A ⊆r B
,
real: ℝ
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
le: A ≤ B
,
rneq: x ≠ y
,
guard: {T}
,
nat: ℕ
,
uiff: uiff(P;Q)
,
rcos: rcos(x)
,
approx-arg: approx-arg(f;B;x)
,
accelerate: accelerate(k;f)
,
rdiv: (x/y)
,
rmul: a * b
,
pi: π
,
int-rmul: k1 * a
,
rinv: rinv(x)
,
mu-ge: mu-ge(f;n)
,
lt_int: i <z j
,
imax: imax(a;b)
,
halfpi: π/2
,
cubic_converge: cubic_converge(b;m)
,
le_int: i ≤z j
,
bnot: ¬bb
,
bfalse: ff
,
fastpi: fastpi(n)
,
reg-seq-inv: reg-seq-inv(x)
,
reg-seq-mul: reg-seq-mul(x;y)
,
cosine: cosine(x)
,
pi1: fst(t)
,
cosine-exists-ext,
int-rdiv: (a)/k1
,
canonical-bound: canonical-bound(r)
,
rsum: Σ{x[k] | n≤k≤m}
,
expfact: expfact(n;x;p;b)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
map: map(f;as)
,
list_ind: list_ind,
from-upto: [n, m)
,
cons: [a / b]
,
nil: []
,
it: ⋅
,
radd-list: radd-list(L)
,
length: ||as||
,
reg-seq-list-add: reg-seq-list-add(L)
,
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
,
fact: (n)!
,
rnexp: x^k1
,
canon-bnd: canon-bnd(x)
,
rev_uimplies: rev_uimplies(P;Q)
,
req_int_terms: t1 ≡ t2
,
rat_term_to_real: rat_term_to_real(f;t)
,
rtermDivide: num "/" denom
,
rat_term_ind: rat_term_ind,
rtermConstant: "const"
,
rtermSubtract: left "-" right
,
pi2: snd(t)
Lemmas referenced :
decidable__lt,
full-omega-unsat,
intformnot_wf,
intformless_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
istype-less_than,
int-to-real_wf,
rsqrt_wf,
rleq-int,
istype-false,
rleq_wf,
rsin-rcos-pythag,
rdiv_wf,
pi_wf,
rless-int,
rless_wf,
radd_wf,
rnexp_wf,
nat_plus_properties,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
istype-le,
rsin_wf,
rcos_wf,
req_functionality,
radd_functionality,
req_weakening,
rnexp_functionality,
rsin-pi-over-4,
rsqrt-unique,
rleq-int-fractions2,
rleq_weakening_rless,
rmul_wf,
req_inversion,
rnexp2,
rsqrt-rnexp-2,
rsqrt-positive-iff,
rdiv_functionality,
rnexp-one,
rneq_functionality,
rnexp-rdiv,
req-implies-req,
rsub_wf,
itermSubtract_wf,
itermAdd_wf,
itermVar_wf,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_const_lemma,
real_term_value_add_lemma,
real_term_value_var_lemma,
assert-rat-term-eq2,
rtermSubtract_wf,
rtermConstant_wf,
rtermDivide_wf,
rsqrt1,
false_wf,
less_than_wf,
rsqrt-rdiv,
efficient-exp-ext,
integer-nth-root-ext,
cosine-exists-ext
Rules used in proof :
cut,
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
independent_pairFormation,
natural_numberEquality,
imageMemberEquality,
hypothesisEquality,
thin,
baseClosed,
sqequalHypSubstitution,
hypothesis,
dependent_set_memberEquality_alt,
extract_by_obid,
dependent_functionElimination,
unionElimination,
isectElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
isect_memberEquality_alt,
voidElimination,
universeIsType,
addEquality,
applyEquality,
setElimination,
rename,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
productElimination,
lambdaFormation_alt,
because_Cache,
closedConclusion,
inrFormation_alt,
int_eqEquality,
multiplyEquality,
lambdaFormation,
dependent_set_memberEquality,
inrFormation
Latex:
rcos((\mpi{}/r(4))) = (r1/rsqrt(r(2)))
Date html generated:
2019_10_30-AM-11_44_11
Last ObjectModification:
2019_04_03-AM-00_21_28
Theory : reals_2
Home
Index