Nuprl Lemma : rsin-pi-over-4
rsin((π/r(4))) = (r1/rsqrt(r(2)))
Proof
Definitions occuring in Statement : 
pi: π, 
rsin: rsin(x), 
rsqrt: rsqrt(x), 
rdiv: (x/y), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
prop: ℙ, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
req_int_terms: t1 ≡ t2, 
rdiv: (x/y), 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
sq_type: SQType(T), 
false: False, 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
decidable: Dec(P), 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
pi: π, 
le: A ≤ B, 
nat: ℕ, 
nat_plus: ℕ+, 
subtype_rel: A ⊆r B, 
rnexp: x^k1, 
subtract: n - m, 
fact: (n)!, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
reg-seq-list-add: reg-seq-list-add(L), 
length: ||as||, 
radd-list: radd-list(L), 
it: ⋅, 
nil: [], 
efficient-exp-ext, 
fastexp: i^n, 
cons: [a / b], 
from-upto: [n, m), 
list_ind: list_ind, 
map: map(f;as), 
evalall: evalall(t), 
callbyvalueall: callbyvalueall, 
expfact: expfact(n;x;p;b), 
rsum: Σ{x[k] | n≤k≤m}, 
int-rdiv: (a)/k1, 
sine-exists-ext, 
pi1: fst(t), 
sine: sine(x), 
reg-seq-mul: reg-seq-mul(x;y), 
reg-seq-inv: reg-seq-inv(x), 
primrec: primrec(n;b;c), 
fastpi: fastpi(n), 
bfalse: ff, 
bnot: ¬bb, 
le_int: i ≤z j, 
cubic_converge: cubic_converge(b;m), 
halfpi: π/2, 
canonical-bound: canonical-bound(r), 
imax: imax(a;b), 
eq_int: (i =z j), 
btrue: tt, 
absval: |i|, 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
mu-ge: mu-ge(f;n), 
rinv: rinv(x), 
int-rmul: k1 * a, 
rmul: a * b, 
accelerate: accelerate(k;f), 
approx-arg: approx-arg(f;B;x), 
rsin: rsin(x), 
int-to-real: r(n), 
sq_exists: ∃x:A [B[x]], 
rless: x < y
Lemmas referenced : 
rcos-radd, 
rless_wf, 
rless-int, 
int-to-real_wf, 
pi_wf, 
rdiv_wf, 
int-rmul-req, 
req_weakening, 
rmul_functionality, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
int-rinv-cancel, 
req_transitivity, 
req_functionality, 
rmul_comm, 
nequal_wf, 
true_wf, 
equal-wf-base, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
req-iff-rsub-is-0, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rinv_wf2, 
int-rmul_wf, 
rmul_wf, 
rmul_preserves_req, 
halfpi_wf, 
radd_wf, 
rcos_functionality, 
rnexp2, 
req_inversion, 
rsub_functionality, 
rcos-halfpi, 
rsin-rcos-pythag, 
le_wf, 
false_wf, 
rnexp_wf, 
rsin_wf, 
rsub_wf, 
rcos_wf, 
rinv-mul-as-rdiv, 
rsin_functionality, 
rnexp_functionality, 
radd-zero, 
radd-preserves-req, 
radd_functionality, 
rleq_wf, 
less_than_wf, 
rleq-int-fractions2, 
rsqrt-unique, 
rleq_weakening_rless, 
equal_wf, 
real_wf, 
rmul-rinv, 
req-implies-req, 
req_wf, 
rleq-int, 
rsqrt_wf, 
rsqrt-positive, 
rdiv_functionality, 
rsqrt-rdiv, 
rsqrt1, 
efficient-exp-ext, 
sine-exists-ext
Rules used in proof : 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
because_Cache, 
dependent_functionElimination, 
inrFormation, 
sqequalRule, 
independent_isectElimination, 
natural_numberEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
int_eqEquality, 
lambdaFormation, 
addLevel, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
unionElimination, 
intEquality, 
cumulativity, 
instantiate, 
multiplyEquality, 
applyEquality, 
addEquality, 
productEquality, 
setEquality, 
rename, 
setElimination
Latex:
rsin((\mpi{}/r(4)))  =  (r1/rsqrt(r(2)))
Date html generated:
2018_05_22-PM-03_00_39
Last ObjectModification:
2018_05_18-PM-04_43_27
Theory : reals_2
Home
Index