Nuprl Lemma : rlog-difference-bound
∀x,y:ℝ.  ((r0 < x) ⇒ (x < y) ⇒ ((rlog(y) - rlog(x)) ≤ (y - x/x)))
Proof
Definitions occuring in Statement : 
rlog: rlog(x), 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iproper: iproper(I), 
top: Top, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
and: P ∧ Q, 
rfun: I ⟶ℝ, 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
subinterval: I ⊆ J , 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
rge: x ≥ y, 
ml-term-to-poly: ml-term-to-poly(t), 
nil: [], 
it: ⋅, 
has-value: (a)↓, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
mean-value-for-bounded-derivative, 
rccint_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
i-finite_wf, 
rdiv_wf, 
int-to-real_wf, 
rless_wf, 
real_wf, 
i-member_wf, 
rless_transitivity1, 
member_rccint_lemma, 
rlog_wf, 
rleq_wf, 
set_wf, 
req_wf, 
req_weakening, 
rdiv_functionality, 
req_functionality, 
sq_stable__req, 
derivative-rlog, 
member_roiint_lemma, 
sq_stable__rless, 
roiint_wf, 
derivative_functionality_wrt_subinterval, 
rabs_wf, 
sq_stable__rleq, 
rmul-one-both, 
rmul-rdiv-cancel, 
rmul-ac, 
rmul_comm, 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
rmul-zero-both, 
rmul-rdiv-cancel2, 
uiff_transitivity, 
rabs-of-nonneg, 
rleq_functionality, 
false_wf, 
rleq-int, 
rmul_wf, 
rmul_preserves_rleq, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rsub_wf, 
rless_transitivity2, 
rleq_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rlog_functionality_wrt_rless, 
rleq_weakening, 
real_polynomial_null, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
evalall-sqequal, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
equal_wf, 
req_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
setEquality, 
productElimination, 
dependent_set_memberEquality, 
rename, 
setElimination, 
lambdaEquality, 
productEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
computeAll, 
sqleReflexivity, 
mlComputation, 
int_eqEquality, 
intEquality
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  <  x)  {}\mRightarrow{}  (x  <  y)  {}\mRightarrow{}  ((rlog(y)  -  rlog(x))  \mleq{}  (y  -  x/x)))
Date html generated:
2017_10_04-PM-10_26_02
Last ObjectModification:
2017_07_28-AM-08_49_50
Theory : reals_2
Home
Index