Nuprl Lemma : equiv-on-corec
∀F:Type ⟶ Type
  (ContinuousMonotone(T.F[T])
  
⇒ (∀G:⋂T:Type. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)
        ((∀T:Type. ∀E:T ⟶ T ⟶ ℙ.  (EquivRel(T;x,y.E x y) 
⇒ EquivRel(F[T];x,y.G E x y)))
        
⇒ EquivRel(corec(T.F[T]);x,y.corec-rel(G) x y))))
Proof
Definitions occuring in Statement : 
corec-rel: corec-rel(G)
, 
corec: corec(T.F[T])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
top: Top
, 
lt_int: i <z j
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
bfalse: ff
, 
compose: f o g
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
corec-rel: corec-rel(G)
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
corec: corec(T.F[T])
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
fun_exp_unroll, 
false_wf, 
le_wf, 
primrec-unroll, 
true_wf, 
top_wf, 
decidable__le, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_weakening2, 
subtype_base_sq, 
bool_subtype_base, 
equal_wf, 
eq_int_eq_false, 
le_weakening, 
subtype_rel_self, 
iff_weakening_equal, 
iff_imp_equal_bool, 
lt_int_wf, 
le-add-cancel2, 
assert_of_lt_int, 
assert_wf, 
iff_wf, 
primrec_wf, 
not-le-2, 
int_seg_wf, 
nat_wf, 
equiv_rel_true, 
bool_wf, 
bfalse_wf, 
equiv_rel_wf, 
set_wf, 
primrec-wf2, 
all_wf, 
continuous-monotone_wf, 
corec_wf, 
corec-rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
isect_memberEquality, 
voidEquality, 
because_Cache, 
unionElimination, 
productElimination, 
addEquality, 
applyEquality, 
intEquality, 
minusEquality, 
instantiate, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
addLevel, 
impliesFunctionality, 
functionExtensionality, 
cumulativity, 
isectEquality, 
functionEquality
Latex:
\mforall{}F:Type  {}\mrightarrow{}  Type
    (ContinuousMonotone(T.F[T])
    {}\mRightarrow{}  (\mforall{}G:\mcap{}T:Type.  ((T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  \mBbbP{})
                ((\mforall{}T:Type.  \mforall{}E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.    (EquivRel(T;x,y.E  x  y)  {}\mRightarrow{}  EquivRel(F[T];x,y.G  E  x  y)))
                {}\mRightarrow{}  EquivRel(corec(T.F[T]);x,y.corec-rel(G)  x  y))))
Date html generated:
2018_07_25-PM-01_30_39
Last ObjectModification:
2018_05_31-AM-10_55_18
Theory : co-recursion
Home
Index