Nuprl Lemma : monotone-bar-induction8

Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
   (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] int_upper: {i...} uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2y.t[x; y] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q squash: T ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b true: True cand: c∧ B outl: outl(x) isl: isl(x) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  strong-continuity-rel all_wf int_upper_wf quotient_wf int_upper_subtype_nat subtype_rel_dep_function nat_wf int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true prop-truncation-quot le_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf exists_wf nat_properties decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma seq-add_wf unit_wf2 equal_wf subtype_rel_union assert_wf isl_wf basic_bar_induction decidable__assert seq-adjoin_wf ext2Baire_wf squash_wf bool_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf decidable__equal_int lelt_wf bfalse_wf and_wf btrue_wf btrue_neq_bfalse intformeq_wf int_formula_prop_eq_lemma decidable__lt equal-wf-base-T int_subtype_base equiv_rel_wf seq-adjoin-is-seq-add iff_weakening_equal implies-quotient-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality isectElimination setElimination because_Cache hypothesis sqequalRule applyEquality functionExtensionality hypothesisEquality natural_numberEquality independent_isectElimination independent_pairFormation dependent_set_memberEquality productElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality addEquality unionElimination cumulativity universeEquality unionEquality productEquality inlEquality imageElimination imageMemberEquality baseClosed addLevel hyp_replacement equalitySymmetry equalityTransitivity equalityElimination promote_hyp instantiate levelHypothesis applyLambdaEquality baseApply closedConclusion inrEquality

Latex:
\mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \00D9(Q[m;f])))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2017_04_20-AM-07_20_50
Last ObjectModification: 2017_02_27-PM-05_56_04

Theory : continuity


Home Index