Nuprl Lemma : pseudo-bounded-is-bounded
∀[S:{S:Type| S ⊆r ℕ} ]. ∀m:S. (pseudo-bounded(S) ⇒ ⇃(∃B:ℕ. ∀n:S. (n ≤ B)))
Proof
Definitions occuring in Statement : 
pseudo-bounded: pseudo-bounded(S), 
quotient: x,y:A//B[x; y], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
set: {x:A| B[x]} , 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
sq_stable: SqStable(P), 
squash: ↓T, 
pseudo-bounded: pseudo-bounded(S), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
int_upper: {i...}, 
so_apply: x[s], 
guard: {T}, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
pi1: fst(t), 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
lelt: i ≤ j < k, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b
Lemmas referenced : 
sq_stable__subtype_rel, 
nat_wf, 
weak-continuity-truncated, 
subtype_rel_wf, 
squash_wf, 
pseudo-bounded_wf, 
exists_wf, 
all_wf, 
int_upper_wf, 
less_than_wf, 
int_upper_subtype_nat, 
subtype_rel_transitivity, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
le_wf, 
implies-quotient-true, 
imax_wf, 
imax_nat, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than'_wf, 
ifthenelse_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
set_subtype_base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
imax_ub, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
promote_hyp, 
productElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
cumulativity, 
dependent_functionElimination, 
independent_isectElimination, 
setEquality, 
universeEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
intEquality, 
natural_numberEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
equalityElimination, 
instantiate, 
inlFormation, 
impliesFunctionality, 
inrFormation
Latex:
\mforall{}[S:\{S:Type|  S  \msubseteq{}r  \mBbbN{}\}  ].  \mforall{}m:S.  (pseudo-bounded(S)  {}\mRightarrow{}  \00D9(\mexists{}B:\mBbbN{}.  \mforall{}n:S.  (n  \mleq{}  B)))
Date html generated:
2017_04_17-AM-09_54_48
Last ObjectModification:
2017_02_27-PM-05_49_24
Theory : continuity
Home
Index