Nuprl Lemma : replace-seq-from-member-enum

āˆ€f:ā„• āŸ¶ š”¹. āˆ€m:ā„•.  (replace-seq-from(f;m;tt) āˆˆ enum-fin-seq(m))


Proof




Definitions occuring in Statement :  replace-seq-from: replace-seq-from(s;n;k) enum-fin-seq: enum-fin-seq(m) l_member: (x āˆˆ l) nat: ā„• btrue: tt bool: š”¹ all: āˆ€x:A. B[x] function: x:A āŸ¶ B[x]
Definitions unfolded in proof :  all: āˆ€x:A. B[x] implies: ā‡’ Q member: t āˆˆ T prop: ā„™ uall: āˆ€[x:A]. B[x] nat: ā„• decidable: Dec(P) or: P āˆØ Q uimplies: supposing a not: Ā¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: āˆƒx:A. B[x] false: False top: Top and: P āˆ§ Q subtype_rel: A āŠ†B list_n: List(n) so_lambda: Ī»2x.t[x] so_apply: x[s] enum-fin-seq: enum-fin-seq(m) replace-seq-from: replace-seq-from(s;n;k) less_than: a < b less_than': less_than'(a;b) true: True squash: ā†“T iff: ā‡ā‡’ Q rev_implies: ā‡ Q bool: š”¹ unit: Unit it: ā‹… btrue: tt uiff: uiff(P;Q) ge: i ā‰„  bfalse: ff sq_type: SQType(T) guard: {T} bnot: Ā¬bb ifthenelse: if then else fi  assert: ā†‘b cand: cāˆ§ B nequal: a ā‰  b āˆˆ 
Lemmas referenced :  l_member_wf nat_wf bool_wf replace-seq-from_wf decidable__le subtract_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf btrue_wf enum-fin-seq_wf list_n_wf exp_wf2 set_wf less_than_wf primrec-wf2 primrec0_lemma member_singleton top_wf lt_int_wf eqtt_to_assert assert_of_lt_int nat_properties eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot primrec-unroll squash_wf true_wf list_wf replace-seq-from-succ append_wf map_wf bfalse_wf subtype_rel_self iff_weakening_equal bool_cases implies_l_member_append eq_int_wf assert_of_eq_int iff_imp_equal_bool assert_wf int_subtype_base neg_assert_of_eq_int member-map assert_elim btrue_neq_bfalse false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis functionExtensionality applyEquality hypothesisEquality because_Cache dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation lessCases baseClosed equalityTransitivity equalitySymmetry imageMemberEquality isect_memberFormation axiomSqEquality imageElimination productElimination equalityElimination promote_hyp instantiate cumulativity universeEquality inlFormation int_eqReduceTrueSq int_eqReduceFalseSq productEquality inrFormation addLevel levelHypothesis

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}m:\mBbbN{}.    (replace-seq-from(f;m;tt)  \mmember{}  enum-fin-seq(m))



Date html generated: 2019_06_20-PM-02_57_15
Last ObjectModification: 2018_08_20-PM-09_39_30

Theory : continuity


Home Index