Nuprl Lemma : replace-seq-from-member-enum
āf:ā ā¶ š¹. ām:ā. (replace-seq-from(f;m;tt) ā enum-fin-seq(m))
Proof
Definitions occuring in Statement :
replace-seq-from: replace-seq-from(s;n;k)
,
enum-fin-seq: enum-fin-seq(m)
,
l_member: (x ā l)
,
nat: ā
,
btrue: tt
,
bool: š¹
,
all: āx:A. B[x]
,
function: x:A ā¶ B[x]
Definitions unfolded in proof :
all: āx:A. B[x]
,
implies: P
ā Q
,
member: t ā T
,
prop: ā
,
uall: ā[x:A]. B[x]
,
nat: ā
,
decidable: Dec(P)
,
or: P āØ Q
,
uimplies: b supposing a
,
not: Ā¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: āx:A. B[x]
,
false: False
,
top: Top
,
and: P ā§ Q
,
subtype_rel: A ār B
,
list_n: A List(n)
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
enum-fin-seq: enum-fin-seq(m)
,
replace-seq-from: replace-seq-from(s;n;k)
,
less_than: a < b
,
less_than': less_than'(a;b)
,
true: True
,
squash: āT
,
iff: P
āā Q
,
rev_implies: P
ā Q
,
bool: š¹
,
unit: Unit
,
it: ā
,
btrue: tt
,
uiff: uiff(P;Q)
,
ge: i ā„ j
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: Ā¬bb
,
ifthenelse: if b then t else f fi
,
assert: āb
,
cand: A cā§ B
,
nequal: a ā b ā T
Lemmas referenced :
l_member_wf,
nat_wf,
bool_wf,
replace-seq-from_wf,
decidable__le,
subtract_wf,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
btrue_wf,
enum-fin-seq_wf,
list_n_wf,
exp_wf2,
set_wf,
less_than_wf,
primrec-wf2,
primrec0_lemma,
member_singleton,
top_wf,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
nat_properties,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
primrec-unroll,
squash_wf,
true_wf,
list_wf,
replace-seq-from-succ,
append_wf,
map_wf,
bfalse_wf,
subtype_rel_self,
iff_weakening_equal,
bool_cases,
implies_l_member_append,
eq_int_wf,
assert_of_eq_int,
iff_imp_equal_bool,
assert_wf,
int_subtype_base,
neg_assert_of_eq_int,
member-map,
assert_elim,
btrue_neq_bfalse,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
rename,
setElimination,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
functionEquality,
hypothesis,
functionExtensionality,
applyEquality,
hypothesisEquality,
because_Cache,
dependent_set_memberEquality,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
lessCases,
baseClosed,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
isect_memberFormation,
axiomSqEquality,
imageElimination,
productElimination,
equalityElimination,
promote_hyp,
instantiate,
cumulativity,
universeEquality,
inlFormation,
int_eqReduceTrueSq,
int_eqReduceFalseSq,
productEquality,
inrFormation,
addLevel,
levelHypothesis
Latex:
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mforall{}m:\mBbbN{}. (replace-seq-from(f;m;tt) \mmember{} enum-fin-seq(m))
Date html generated:
2019_06_20-PM-02_57_15
Last ObjectModification:
2018_08_20-PM-09_39_30
Theory : continuity
Home
Index