Nuprl Lemma : tree-tensor_wf

[T:Type]. ∀[n:ℕ]. ∀[p,q:wfd-tree(T)].  (tree-tensor(n;p;q) ∈ wfd-tree(T))


Proof




Definitions occuring in Statement :  tree-tensor: tree-tensor(n;p;q) wfd-tree: wfd-tree(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) wfd-tree: wfd-tree(T) so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b tree-tensor: tree-tensor(n;p;q) Wsup: Wsup(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b int_upper: {i...} pcw-pp-barred: Barred(pp) cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 true: True squash: T isr: isr(x) ext-eq: A ≡ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf wfd-tree_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf W_wf bool_wf ifthenelse_wf decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf eq_int_wf eqtt_to_assert assert_of_eq_int Wsup_wf equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies zero-add btrue_wf subtype_rel_dep_function subtype_rel_self int_upper_properties W-elimination-facts top_wf true_wf add-subtract-cancel W-ext param-co-W-ext unit_wf2 it_wf param-co-W_wf ext-eq_inversion subtype_rel_weakening assert_wf bfalse_wf pcw-steprel_wf set_subtype_base int_subtype_base member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality instantiate universeEquality addEquality equalityElimination functionExtensionality promote_hyp strong_bar_Induction lessCases sqequalAxiom imageMemberEquality baseClosed imageElimination int_eqReduceTrueSq dependent_pairEquality functionEquality productEquality inlEquality unionEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[p,q:wfd-tree(T)].    (tree-tensor(n;p;q)  \mmember{}  wfd-tree(T))



Date html generated: 2017_04_17-AM-09_36_14
Last ObjectModification: 2017_02_27-PM-05_35_44

Theory : fan-theorem


Home Index