Nuprl Lemma : fset-size-union

[T:Type]
  ∀[eq:EqDecider(T)]. ∀[a,b:fset(T)].  (||a ⋃ b|| ((||a|| ||b||) ||a ⋂ b||) ∈ ℤsupposing valueall-type(T)


Proof




Definitions occuring in Statement :  fset-size: ||s|| fset-intersection: a ⋂ b fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] subtract: m add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] implies:  Q prop: guard: {T} squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A uiff: uiff(P;Q) sq_stable: SqStable(P) cand: c∧ B
Lemmas referenced :  fset-induction all_wf fset_wf equal_wf fset-size_wf fset-union_wf subtract_wf fset-intersection_wf nat_wf sq_stable__all sq_stable__equal not_wf fset-member_wf deq_wf valueall-type_wf squash_wf true_wf empty-fset-union iff_weakening_equal fsize_empty_lemma empty_intersect_lemma decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermSubtract_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf empty-fset_wf fset-add_wf fset-add-as-cons fset-add-union decidable__fset-member and_wf fset-extensionality sq_stable_from_decidable decidable__or or_wf member-fset-union fset-member_witness uiff_wf member-fset-add decidable-equal-deq decidable__and2 iff_weakening_uiff member-fset-intersection subtract-is-int-iff add-is-int-iff intformand_wf int_formula_prop_and_lemma false_wf add_functionality_wrt_eq fset-size-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality cumulativity hypothesis intEquality because_Cache applyEquality addEquality setElimination rename independent_functionElimination lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination voidElimination voidEquality unionElimination dependent_pairFormation int_eqEquality computeAll hyp_replacement applyLambdaEquality inrFormation dependent_set_memberEquality independent_pairFormation addLevel orFunctionality independent_pairEquality productEquality inlFormation pointwiseFunctionality promote_hyp baseApply closedConclusion impliesFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(T)].    (||a  \mcup{}  b||  =  ((||a||  +  ||b||)  -  ||a  \mcap{}  b||)) 
    supposing  valueall-type(T)



Date html generated: 2017_04_17-AM-09_22_54
Last ObjectModification: 2017_02_27-PM-05_25_17

Theory : finite!sets


Home Index