Nuprl Lemma : insert-combine-sorted-by

T:Type. ∀cmp:comparison(T).
  ((∀u,x,z:T.  (0 < cmp  0 < cmp  0 < cmp z))
   (∀f:T ⟶ T ⟶ T
        ((∀u,x:T.  (((cmp u) 0 ∈ ℤ ((cmp (f u)) 0 ∈ ℤ)))
         (∀L:T List. ∀x:T.  (sorted-by(λx,y. 0 < cmp y;L)  sorted-by(λx,y. 0 < cmp y;insert-combine(cmp;f;x;L)))\000C))))


Proof




Definitions occuring in Statement :  insert-combine: insert-combine(cmp;f;x;l) comparison: comparison(T) sorted-by: sorted-by(R;L) list: List less_than: a < b all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: comparison: comparison(T) so_apply: x[s] insert-combine: insert-combine(cmp;f;x;l) sorted-by: sorted-by(R;L) select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A has-value: (a)↓ bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b l_all: (∀x∈L.P[x]) squash: T true: True subtype_rel: A ⊆B decidable: Dec(P) less_than: a < b nequal: a ≠ b ∈  l_exists: (∃x∈L. P[x])
Lemmas referenced :  list_induction all_wf sorted-by_wf l_member_wf less_than_wf insert-combine_wf list_wf equal-wf-T-base comparison_wf length_of_nil_lemma stuck-spread base_wf list_ind_nil_lemma length_of_cons_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_wf list_ind_cons_lemma value-type-has-value int-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int sorted-by-cons eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int cons_wf squash_wf true_wf iff_weakening_equal select_wf length_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt intformeq_wf int_formula_prop_eq_lemma l_all_cons minus-is-int-iff itermMinus_wf int_term_value_minus_lemma false_wf l_all_iff member-insert-combine and_wf select_member minus_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity functionEquality because_Cache hypothesis setElimination rename natural_numberEquality applyEquality setEquality dependent_functionElimination functionExtensionality independent_functionElimination intEquality baseClosed universeEquality independent_isectElimination isect_memberEquality voidElimination voidEquality productElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll callbyvalueReduce unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate imageElimination imageMemberEquality pointwiseFunctionality baseApply closedConclusion hyp_replacement dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).
    ((\mforall{}u,x,z:T.    (0  <  cmp  x  u  {}\mRightarrow{}  0  <  cmp  u  z  {}\mRightarrow{}  0  <  cmp  x  z))
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
                ((\mforall{}u,x:T.    (((cmp  x  u)  =  0)  {}\mRightarrow{}  ((cmp  u  (f  x  u))  =  0)))
                {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x:T.
                            (sorted-by(\mlambda{}x,y.  0  <  cmp  x  y;L)  {}\mRightarrow{}  sorted-by(\mlambda{}x,y.  0  <  cmp  x  y;insert-combine(cmp;f;x;\000CL)))))))



Date html generated: 2017_04_17-AM-08_29_48
Last ObjectModification: 2017_02_27-PM-04_52_53

Theory : list_1


Home Index