Nuprl Lemma : expfact_wf

[m:ℕ+]. ∀[k:ℕ]. ∀[n:ℕ+].  ∀b:{b:ℕk^b < (b)!} ((m ≤ b)  (expfact(m;k;n k^m;(m)!) ∈ {b:ℕ+(n k^b) ≤ (b)!} \000C))


Proof




Definitions occuring in Statement :  expfact: expfact(n;x;p;b) fact: (n)! exp: i^n nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q nat_plus: + nat: subtype_rel: A ⊆B false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: expfact: expfact(n;x;p;b) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} subtract: m le: A ≤ B top: Top squash: T less_than: a < b has-value: (a)↓ sq_type: SQType(T) sq_stable: SqStable(P) true: True
Lemmas referenced :  istype-le istype-less_than exp_wf2 fact_wf istype-nat nat_plus_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf subtract-1-ge-0 le_int_wf subtract_wf nat_plus_properties decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma equal-wf-base bool_wf set_subtype_base nat_wf less_than_wf le_wf int_subtype_base assert_wf lt_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int nat_plus_subtype_nat add-zero minus-zero multiply-is-int-iff false_wf int_term_value_mul_lemma istype-void itermMultiply_wf decidable__lt value-type-has-value int-value-type subtype_base_sq decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma mul-swap subtract-elim minus-one-mul exp_step minus-add minus-minus add-associates add-swap add-commutes zero-add fact_unroll_1 sq_stable__less_than true_wf squash_wf zero-mul add-mul-special
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin setElimination rename hypothesisEquality setIsType inhabitedIsType multiplyEquality applyEquality lambdaEquality_alt equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies universeIsType intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination because_Cache dependent_set_memberEquality_alt unionElimination baseApply closedConclusion baseClosed intEquality equalityElimination productElimination equalityIstype promote_hyp pointwiseFunctionality imageElimination callbyvalueReduce addEquality instantiate cumulativity minusEquality imageMemberEquality

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].
    \mforall{}b:\{b:\mBbbN{}|  n  *  k\^{}b  <  (b)!\}  .  ((m  \mleq{}  b)  {}\mRightarrow{}  (expfact(m;k;n  *  k\^{}m;(m)!)  \mmember{}  \{b:\mBbbN{}\msupplus{}|  (n  *  k\^{}b)  \mleq{}  (b)!\}  ))



Date html generated: 2020_05_19-PM-10_03_36
Last ObjectModification: 2019_12_31-PM-00_11_42

Theory : num_thy_1


Home Index