Nuprl Lemma : expfact_wf
∀[m:ℕ+]. ∀[k:ℕ]. ∀[n:ℕ+].  ∀b:{b:ℕ| n * k^b < (b)!} . ((m ≤ b) 
⇒ (expfact(m;k;n * k^m;(m)!) ∈ {b:ℕ+| (n * k^b) ≤ (b)!} \000C))
Proof
Definitions occuring in Statement : 
expfact: expfact(n;x;p;b)
, 
fact: (n)!
, 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
multiply: n * m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
expfact: expfact(n;x;p;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
subtract: n - m
, 
le: A ≤ B
, 
top: Top
, 
squash: ↓T
, 
less_than: a < b
, 
has-value: (a)↓
, 
sq_type: SQType(T)
, 
sq_stable: SqStable(P)
, 
true: True
Lemmas referenced : 
istype-le, 
istype-less_than, 
exp_wf2, 
fact_wf, 
istype-nat, 
nat_plus_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
subtract-1-ge-0, 
le_int_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
equal-wf-base, 
bool_wf, 
set_subtype_base, 
nat_wf, 
less_than_wf, 
le_wf, 
int_subtype_base, 
assert_wf, 
lt_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
nat_plus_subtype_nat, 
add-zero, 
minus-zero, 
multiply-is-int-iff, 
false_wf, 
int_term_value_mul_lemma, 
istype-void, 
itermMultiply_wf, 
decidable__lt, 
value-type-has-value, 
int-value-type, 
subtype_base_sq, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
mul-swap, 
subtract-elim, 
minus-one-mul, 
exp_step, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
fact_unroll_1, 
sq_stable__less_than, 
true_wf, 
squash_wf, 
zero-mul, 
add-mul-special
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
setIsType, 
inhabitedIsType, 
multiplyEquality, 
applyEquality, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
unionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
pointwiseFunctionality, 
imageElimination, 
callbyvalueReduce, 
addEquality, 
instantiate, 
cumulativity, 
minusEquality, 
imageMemberEquality
Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].
    \mforall{}b:\{b:\mBbbN{}|  n  *  k\^{}b  <  (b)!\}  .  ((m  \mleq{}  b)  {}\mRightarrow{}  (expfact(m;k;n  *  k\^{}m;(m)!)  \mmember{}  \{b:\mBbbN{}\msupplus{}|  (n  *  k\^{}b)  \mleq{}  (b)!\}  ))
Date html generated:
2020_05_19-PM-10_03_36
Last ObjectModification:
2019_12_31-PM-00_11_42
Theory : num_thy_1
Home
Index