Nuprl Lemma : rel_plus-restriction-equiv

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  ((∀x,y:T.  ((P[y] ∧ (R y))  P[x]))  (∀x,y:T.  (R|P+ ⇐⇒ R+|P y)))


Proof




Definitions occuring in Statement :  rel_plus: R+ rel-restriction: R|P uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rel_implies: R1 => R2 infix_ap: y nat_plus: + nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt rel-restriction: R|P cand: c∧ B sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) squash: T true: True trans: Trans(T;x,y.E[x; y]) rel_plus: R+
Lemmas referenced :  rel_plus_wf rel-restriction_wf all_wf rel_plus-of-restriction nat_plus_properties rel_exp_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf false_wf rel-rel-plus itermAdd_wf int_term_value_add_lemma eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-base int_subtype_base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot add-subtract-cancel exists_wf equal_wf add-associates add-swap add-commutes zero-add squash_wf true_wf nat_wf and_wf less_than_wf rel_plus_trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality hypothesis lambdaEquality sqequalRule functionEquality universeEquality productEquality because_Cache dependent_functionElimination independent_functionElimination rename setElimination dependent_set_memberEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productElimination equalitySymmetry hyp_replacement applyLambdaEquality addEquality equalityTransitivity baseApply closedConclusion baseClosed instantiate impliesFunctionality imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    ((P[y]  \mwedge{}  (R  x  y))  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R|P\msupplus{}  x  y  \mLeftarrow{}{}\mRightarrow{}  R\msupplus{}|P  x  y)))



Date html generated: 2017_04_17-AM-09_28_04
Last ObjectModification: 2017_02_27-PM-05_28_30

Theory : relations2


Home Index