Nuprl Lemma : rel_plus-restriction-equiv
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  ((∀x,y:T.  ((P[y] ∧ (R x y)) 
⇒ P[x])) 
⇒ (∀x,y:T.  (R|P+ x y 
⇐⇒ R+|P x y)))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
rel-restriction: R|P
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
rel-restriction: R|P
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
, 
trans: Trans(T;x,y.E[x; y])
, 
rel_plus: R+
Lemmas referenced : 
rel_plus_wf, 
rel-restriction_wf, 
all_wf, 
rel_plus-of-restriction, 
nat_plus_properties, 
rel_exp_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
nat_plus_wf, 
false_wf, 
rel-rel-plus, 
itermAdd_wf, 
int_term_value_add_lemma, 
eq_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
add-subtract-cancel, 
exists_wf, 
equal_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
true_wf, 
nat_wf, 
and_wf, 
less_than_wf, 
rel_plus_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
functionEquality, 
universeEquality, 
productEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
baseClosed, 
instantiate, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    ((P[y]  \mwedge{}  (R  x  y))  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R|P\msupplus{}  x  y  \mLeftarrow{}{}\mRightarrow{}  R\msupplus{}|P  x  y)))
Date html generated:
2017_04_17-AM-09_28_04
Last ObjectModification:
2017_02_27-PM-05_28_30
Theory : relations2
Home
Index