Nuprl Lemma : chinese-remainder1

r:ℤ. ∀s:{s':ℤCoPrime(r,s')} . ∀a,b:ℤ.  (∃x:ℤ [((x ≡ mod r) ∧ (x ≡ mod s))])


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] prop: nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} cand: c∧ B sq_exists: x:A [B[x]] false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B divides: a eqmod: a ≡ mod m rev_implies:  Q iff: ⇐⇒ Q true: True squash: T nequal: a ≠ b ∈  int_nzero: -o subtract: m uiff: uiff(P;Q) sq_stable: SqStable(P) assoced: b less_than': less_than'(a;b) le: A ≤ B gcd_p: GCD(a;b;y) coprime: CoPrime(a,b)
Lemmas referenced :  gcd-reduce coprime_wf istype-int decidable__equal_int subtype_base_sq int_subtype_base mul-commutes one-mul eqmod_wf eqmod_refl int_formula_prop_wf int_term_value_add_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf itermConstant_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat nat_properties set_subtype_base subtract_wf int_term_value_subtract_lemma itermSubtract_wf iff_weakening_equal subtype_rel_self mul_assoc istype-universe true_wf squash_wf equal_wf int_entire_a div_rem_sum nequal_wf remainder_wfa mul-distributes add-associates minus-one-mul mul-swap mul-associates zero-mul zero-add add-zero eqmod-zero eqmod_functionality_wrt_eqmod add_functionality_wrt_eqmod multiply_functionality_wrt_eqmod eqmod_weakening subtract_functionality_wrt_eqmod add-is-int-iff multiply-is-int-iff false_wf divide_wfa sq_stable__eqmod one_divs_any istype-le istype-void assoced_nelim le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis productElimination inhabitedIsType setIsType universeIsType isectElimination equalityTransitivity equalitySymmetry unionElimination instantiate cumulativity intEquality independent_isectElimination independent_functionElimination because_Cache Error :memTop,  sqequalRule natural_numberEquality productIsType independent_pairFormation dependent_set_memberFormation_alt voidElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt approximateComputation sqequalBase applyEquality baseClosed closedConclusion baseApply equalityIstype multiplyEquality promote_hyp imageMemberEquality universeEquality imageElimination addEquality dependent_set_memberEquality_alt pointwiseFunctionality

Latex:
\mforall{}r:\mBbbZ{}.  \mforall{}s:\{s':\mBbbZ{}|  CoPrime(r,s')\}  .  \mforall{}a,b:\mBbbZ{}.    (\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])



Date html generated: 2020_05_20-AM-08_13_21
Last ObjectModification: 2020_01_09-AM-00_05_14

Theory : general


Home Index