Nuprl Lemma : chinese-remainder1
∀r:ℤ. ∀s:{s':ℤ| CoPrime(r,s')} . ∀a,b:ℤ.  (∃x:ℤ [((x ≡ a mod r) ∧ (x ≡ b mod s))])
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
sq_exists: ∃x:A [B[x]]
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
divides: b | a
, 
eqmod: a ≡ b mod m
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
assoced: a ~ b
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
gcd_p: GCD(a;b;y)
, 
coprime: CoPrime(a,b)
Lemmas referenced : 
gcd-reduce, 
coprime_wf, 
istype-int, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
mul-commutes, 
one-mul, 
eqmod_wf, 
eqmod_refl, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
set_subtype_base, 
subtract_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
iff_weakening_equal, 
subtype_rel_self, 
mul_assoc, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
int_entire_a, 
div_rem_sum, 
nequal_wf, 
remainder_wfa, 
mul-distributes, 
add-associates, 
minus-one-mul, 
mul-swap, 
mul-associates, 
zero-mul, 
zero-add, 
add-zero, 
eqmod-zero, 
eqmod_functionality_wrt_eqmod, 
add_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod, 
eqmod_weakening, 
subtract_functionality_wrt_eqmod, 
add-is-int-iff, 
multiply-is-int-iff, 
false_wf, 
divide_wfa, 
sq_stable__eqmod, 
one_divs_any, 
istype-le, 
istype-void, 
assoced_nelim, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
inhabitedIsType, 
setIsType, 
universeIsType, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache, 
Error :memTop, 
sqequalRule, 
natural_numberEquality, 
productIsType, 
independent_pairFormation, 
dependent_set_memberFormation_alt, 
voidElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
sqequalBase, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityIstype, 
multiplyEquality, 
promote_hyp, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
addEquality, 
dependent_set_memberEquality_alt, 
pointwiseFunctionality
Latex:
\mforall{}r:\mBbbZ{}.  \mforall{}s:\{s':\mBbbZ{}|  CoPrime(r,s')\}  .  \mforall{}a,b:\mBbbZ{}.    (\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])
Date html generated:
2020_05_20-AM-08_13_21
Last ObjectModification:
2020_01_09-AM-00_05_14
Theory : general
Home
Index