Nuprl Lemma : fact-increasing

[m:ℕ]. ∀[n:ℕ+].  (n <  (n)! < (m)!)


Proof




Definitions occuring in Statement :  fact: (n)! nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b squash: T fact: (n)! primrec: primrec(n;b;c) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  minus-one-mul-top minus-one-mul minus-minus add-swap le-add-cancel2 minus-zero minus-add condition-implies-le add-commutes le-add-cancel add-zero zero-add add-associates add_functionality_wrt_le less-iff-le not-equal-2 not-lt-2 false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff int_formual_prop_imp_lemma intformimplies_wf decidable__lt mul_preserves_lt fact_unroll_1 fact0_redex_lemma int_subtype_base decidable__equal_int neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf fact_unroll nat_wf nat_plus_subtype_nat le_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le nat_plus_wf nat_plus_properties fact_wf member-less_than less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination applyEquality because_Cache unionElimination dependent_set_memberEquality equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate equalityEquality cumulativity imageElimination imageMemberEquality baseClosed multiplyEquality pointwiseFunctionality baseApply closedConclusion addEquality minusEquality

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (n  <  m  {}\mRightarrow{}  (n)!  <  (m)!)



Date html generated: 2016_05_15-PM-04_05_17
Last ObjectModification: 2016_01_16-AM-11_02_59

Theory : general


Home Index