Nuprl Lemma : fps-compose-single-disjoint
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[v:bag(X)].
((¬x ↓∈ v)
⇒ (∀[f:PowerSeries(X;r)]. (<v>(x:=f) = <v> ∈ PowerSeries(X;r))))
supposing valueall-type(X)
Proof
Definitions occuring in Statement :
fps-compose: g(x:=f)
,
fps-single: <c>
,
power-series: PowerSeries(X;r)
,
bag-member: x ↓∈ bs
,
bag: bag(T)
,
deq: EqDecider(T)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
universe: Type
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
empty-bag: {}
,
uiff: uiff(P;Q)
,
fps-one: 1
,
fps-coeff: f[b]
,
fps-single: <c>
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
crng: CRng
,
rng: Rng
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
cons-bag: x.b
,
top: Top
,
fps-atom: atom(x)
,
rev_uimplies: rev_uimplies(P;Q)
,
sq_or: a ↓∨ b
Lemmas referenced :
bag_to_squash_list,
not_wf,
bag-member_wf,
list_induction,
list-subtype-bag,
equal_wf,
power-series_wf,
fps-compose_wf,
fps-single_wf,
list_wf,
nil_wf,
cons_wf,
bag_wf,
crng_wf,
deq_wf,
valueall-type_wf,
squash_wf,
true_wf,
fps-compose-one,
fps-one_wf,
iff_weakening_equal,
fps-ext,
empty-bag_wf,
bag-eq_wf,
bool_wf,
eqtt_to_assert,
assert-bag-eq,
bag-null_wf,
assert-bag-null,
rng_one_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
equal-wf-T-base,
rng_zero_wf,
single-bag_wf,
fps-mul_wf,
cons-bag-as-append,
fps-mul-single,
fps-compose-mul,
fps-compose-atom-neq,
bag-member-cons
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
imageElimination,
productElimination,
promote_hyp,
hypothesis,
equalitySymmetry,
hyp_replacement,
applyLambdaEquality,
cumulativity,
rename,
sqequalRule,
lambdaEquality,
functionEquality,
applyEquality,
independent_isectElimination,
independent_functionElimination,
voidEquality,
voidElimination,
dependent_functionElimination,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
unionElimination,
equalityElimination,
setElimination,
dependent_pairFormation,
instantiate,
inlFormation,
inrFormation
Latex:
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[x:X]. \mforall{}[v:bag(X)].
((\mneg{}x \mdownarrow{}\mmember{} v) {}\mRightarrow{} (\mforall{}[f:PowerSeries(X;r)]. (<v>(x:=f) = <v>)))
supposing valueall-type(X)
Date html generated:
2018_05_21-PM-10_10_15
Last ObjectModification:
2017_07_26-PM-06_34_20
Theory : power!series
Home
Index