Nuprl Lemma : fps-compose-single-disjoint

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[v:bag(X)].
    ((¬x ↓∈ v)  (∀[f:PowerSeries(X;r)]. (<v>(x:=f) = <v> ∈ PowerSeries(X;r)))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-single: <c> power-series: PowerSeries(X;r) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A implies:  Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q squash: T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q empty-bag: {} uiff: uiff(P;Q) fps-one: 1 fps-coeff: f[b] fps-single: <c> bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  crng: CRng rng: Rng bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A cons-bag: x.b top: Top fps-atom: atom(x) rev_uimplies: rev_uimplies(P;Q) sq_or: a ↓∨ b
Lemmas referenced :  bag_to_squash_list not_wf bag-member_wf list_induction list-subtype-bag equal_wf power-series_wf fps-compose_wf fps-single_wf list_wf nil_wf cons_wf bag_wf crng_wf deq_wf valueall-type_wf squash_wf true_wf fps-compose-one fps-one_wf iff_weakening_equal fps-ext empty-bag_wf bag-eq_wf bool_wf eqtt_to_assert assert-bag-eq bag-null_wf assert-bag-null rng_one_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base rng_zero_wf single-bag_wf fps-mul_wf cons-bag-as-append fps-mul-single fps-compose-mul fps-compose-atom-neq bag-member-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality cumulativity rename sqequalRule lambdaEquality functionEquality applyEquality independent_isectElimination independent_functionElimination voidEquality voidElimination dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination setElimination dependent_pairFormation instantiate inlFormation inrFormation

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[v:bag(X)].
        ((\mneg{}x  \mdownarrow{}\mmember{}  v)  {}\mRightarrow{}  (\mforall{}[f:PowerSeries(X;r)].  (<v>(x:=f)  =  <v>))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_10_15
Last ObjectModification: 2017_07_26-PM-06_34_20

Theory : power!series


Home Index