Nuprl Lemma : qadd_positive
∀[r,s:ℚ].  (↑qpositive(r + s)) supposing ((↑qpositive(s)) and (↑qpositive(r)))
Proof
Definitions occuring in Statement : 
qpositive: qpositive(r)
, 
qadd: r + s
, 
rationals: ℚ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
qdiv: (r/s)
, 
top: Top
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
mk-rational: mk-rational(a;b)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
or: P ∨ Q
, 
nat: ℕ
, 
decidable: Dec(P)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
band: p ∧b q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
qinv-elim, 
qmul-elim, 
isint-int, 
istype-void, 
mk-rational_wf, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nequal_wf, 
qpositive-elim, 
qadd-elim, 
mul_nzero, 
mul-associates, 
mul-commutes, 
mul-swap, 
one-mul, 
add-commutes, 
add_nat_plus, 
multiply_nat_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
intformor_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_or_lemma, 
istype-le, 
multiply_nat_plus, 
decidable__lt, 
istype-less_than, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
mul_bounds_1b, 
iff_transitivity, 
bor_wf, 
lt_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_lt_int, 
bfalse_wf, 
less_than_wf, 
assert_of_bor, 
assert_of_band, 
qpositive_wf, 
qdiv_wf, 
qadd_wf, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
lambdaFormation_alt, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
because_Cache, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
closedConclusion, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
universeIsType, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
multiplyEquality, 
addEquality, 
inlFormation_alt, 
unionElimination, 
equalityTransitivity, 
applyLambdaEquality, 
productIsType, 
unionIsType, 
instantiate, 
cumulativity, 
unionEquality, 
productEquality, 
promote_hyp, 
inrFormation_alt, 
hyp_replacement, 
isectEquality, 
isectIsTypeImplies
Latex:
\mforall{}[r,s:\mBbbQ{}].    (\muparrow{}qpositive(r  +  s))  supposing  ((\muparrow{}qpositive(s))  and  (\muparrow{}qpositive(r)))
Date html generated:
2019_10_16-AM-11_47_56
Last ObjectModification:
2019_06_25-PM-00_20_47
Theory : rationals
Home
Index