Nuprl Lemma : qadd_positive

[r,s:ℚ].  (↑qpositive(r s)) supposing ((↑qpositive(s)) and (↑qpositive(r)))


Proof




Definitions occuring in Statement :  qpositive: qpositive(r) qadd: s rationals: assert: b uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q qdiv: (r/s) top: Top ifthenelse: if then else fi  btrue: tt mk-rational: mk-rational(a;b) int_nzero: -o nequal: a ≠ b ∈  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: bfalse: ff or: P ∨ Q nat: decidable: Dec(P) guard: {T} sq_type: SQType(T) uiff: uiff(P;Q) band: p ∧b q rev_implies:  Q
Lemmas referenced :  q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 int-subtype-rationals equal-wf-base rationals_wf int_subtype_base assert-qeq istype-assert qinv-elim qmul-elim isint-int istype-void mk-rational_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf qpositive-elim qadd-elim mul_nzero mul-associates mul-commutes mul-swap one-mul add-commutes add_nat_plus multiply_nat_wf decidable__le intformnot_wf intformle_wf intformor_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_formula_prop_or_lemma istype-le multiply_nat_plus decidable__lt istype-less_than itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma mul_bounds_1b iff_transitivity bor_wf lt_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert_of_lt_int bfalse_wf less_than_wf assert_of_bor assert_of_band qpositive_wf qdiv_wf qadd_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination hypothesis setElimination rename lambdaFormation_alt independent_functionElimination applyEquality sqequalRule natural_numberEquality because_Cache baseClosed isect_memberEquality_alt voidElimination closedConclusion dependent_set_memberEquality_alt independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType equalityIstype inhabitedIsType sqequalBase equalitySymmetry intEquality multiplyEquality addEquality inlFormation_alt unionElimination equalityTransitivity applyLambdaEquality productIsType unionIsType instantiate cumulativity unionEquality productEquality promote_hyp inrFormation_alt hyp_replacement isectEquality isectIsTypeImplies

Latex:
\mforall{}[r,s:\mBbbQ{}].    (\muparrow{}qpositive(r  +  s))  supposing  ((\muparrow{}qpositive(s))  and  (\muparrow{}qpositive(r)))



Date html generated: 2019_10_16-AM-11_47_56
Last ObjectModification: 2019_06_25-PM-00_20_47

Theory : rationals


Home Index